コモンレール式 DME 噴射系を用いた圧縮着火機関の燃焼改善 - 噴射圧力の影響 -

安 秉一* 佐藤 由雄* 鈴木 央一* 高柳 智光* 大聖 泰弘**

Combustion improvement of a Compression Ignition Engine with a Common Rail DME Injection Equipment

- Effects of Injection Pressure -

by

Byeong-il An^{*} Yoshio Sato^{*} Hisakazu Suzuki^{*} Toshimitsu Takayanagi^{*} Yasuhiro Daisho^{**}

Abstract

Recently there has been much interest in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, which makes it eminently suitable for compression engines. According to the latest engine test results, however, DME engine energy consumption was inferior to a diesel engine s under a heavy load. DME probably requires strong air-fuel mixing and short fuel injection. Some tests have reported that DME engine performance almost equals a diesel engine s by injecting high rail pressure DME into standard or slightly modified diesel common rail injection equipment. The effect, however, of higher injection pressure on the rates of heat release and spray distribution is unclear. In this study the rail pressure levels examined included 20, 25, 30, and 35 MPa. The results obtained from a single cylinder heavy-duty engine test show that the rate of heat release increases during the premixed combustion phase. A lower BSEC is obtained under higher injection pressure, which is also lower than that of a diesel engine. In addition, a visualization of spray behavior in a high-temperature and high-pressure chamber shows that DME evaporation is active under higher injection pressure. Conversely, the higher rail pressure increases NOx concentration. These effects were due to the large amount of fuel injected during the ignition delay period.

大都市地域の環境改善が緊急の課題となっており、 大気汚染の主な原因であるディーゼルエンジンから 排出される窒素酸化物(NOx)および微粒子(PM) の同時低減が強く求められている。DMEは天然ガスや 石炭からの大量生産が可能であり、黒煙が排出しな いことに加え、ディーゼル用のクリーン燃料として 注目されている。また、大量EGR⁽⁶⁾⁽⁸⁾や触媒が利用 でき、さらに圧縮着火燃焼が行えるという利点より 大型車用エンジンの低エミッション化に適した燃料 といわれている。⁽¹⁾⁻⁽⁵⁾

しかしながら、DMEは軽油に比べて沸点、粘度、体 積弾性率が低く単位体積当たりの発熱量も軽油の半 分程度という特性を有するため、DMEエンジンにおい てディーゼル並みの性能を確保するためには、こう した点を考慮した噴射系及び燃焼系の開発が必要で ある。特に、現在DMEエンジンにおいて、最も重要な 課題である高回転・高負荷時における燃焼改善が必 要とされている。⁽¹⁰⁾⁽¹¹⁾

そこで、本研究では DME エンジン性能と排出ガス に及ぼす噴射圧力の影響を明らかにするため、コモ ンレール式燃料噴射系にパイロット弁式インジェク ターを用いて単気筒エンジン試験を行うとともに、 高温高圧場に噴射される DME 噴霧の分散、蒸発過程 をレーザ計測により高速度撮影し、DME エンジンの 性能及び燃焼特性との関係を調べたので報告する。

2.実験装置及び方法

2.1.コモンレール式燃料噴射装置

図1に実験装置の概略を示す。噴射系にはコモン レール式燃料噴射装置を使用した。図の左上部に示 すように、DME はモータ駆動の燃料噴射ポンプによ り加圧されコモンレール部において圧力調整された 後、インジェクターにより噴射される。表1に実験 に使用したエンジンおよび噴射系の諸元を示す。こ のインジェクターは磁歪素子により作動制御される パイロット弁により針弁に加わる燃料圧力を制御す る方式であり、直噴ディーゼルエンジンの高圧噴射 にも対応可能である。

図 2 にエンジン実験に使用したパイロット弁式イ ンジェクターの外観及び構造を示す。DME エンジン ではディーゼルと同等の出力を得るために約 1.8 倍

Fig.1 Schematics of experimental system

Table1 Specifications of test engine and injection system

	DME engine	Diesel engine
Туре	4-stroke	\leftarrow
Combustion	Direct injection	\leftarrow
Number of cylinder	1	\leftarrow
Bore & Stroke、 mm	108 × 115	~
Displacement, cm ³	1053	\leftarrow
Compression ratio	18.1	\leftarrow
Injector, mm	Common rail	Common rail
	0.5×5	0.20×5
Injection pressure、 MPa	20 - 35	60 - 110

の噴射量が必要となる。DME の圧縮性を配慮してよ り低圧で噴射期間を増やさずに噴射量を確保するた め、DME の噴射ノズルの総噴孔面積をディーゼルノ ズルより拡大した。

2.2.単気筒エンジン実験

エンジン実験にはベースエンジンとして表1に示 す排気量 1053cm³の単気筒直噴式ディーゼルエンジ ンを用い、シリンダヘッドを改造してDME用のインジ ェクターを取り付けた。燃料として工業用のDME(純 度 99.9wt%)を使用し、燃料噴射ポンプ及びノ

Fig.2 Schematic of common-rail injector

Table2 Characteristics of DME and diesel fuel

	DME	Diesel
Liquid density kg/m ³	667	831
Boiling point K	248	453-633
Stoich. A/F ratio	9.0	14.6
Auto ignition temp. K	508	523
Critical pressure MPa	5.37	-
Critical temperature K	400	-
LHV MJ/kg	28.8	42.7
Heat of vaporization kJ/kg	467.13	300
Modulus of elasticity N/m ³ ×10 ⁻⁸	6.37	14.9
Cetane number	55>	40-55

ズル部における潤滑を目的として、添加剤 (Lubrizol)を800ppmの割合で混合した。表2に DMEの代表的な燃料性状を示す。実験ではDMEタン クを温水で暖めてそのフィード圧力を約1.0MPaに 設定した。運転に当たっては、トルクー定でエンジ ン回転速度を1280rpm、1920rpmm、2560rpm、2800rpm とした。また、噴射時期は各エンジン回転数におい て、燃費が最大になる噴射タイミングを設定した。 排出ガスについては、C0をNDIR、N0×については CLD、THCはHFIDの各方式で測定した。

2.3. 噴射特性実験

図1の右下部にはDME 噴霧の可視化装置を示す。 可視化装置は定容容器、燃料供給系、光学系、高速 度カメラおよび画像処理装置により構成される。定 容容器の両面には直径(120mm)×厚さ(50mm)の石英 ガラスを装着し、インジェクターからの噴霧を観察 できるようにした。観測部の気体として窒素を高圧 ボンベから供給し、減圧レギュレータで調整した。 また、観測部の温度は高温(1200)に耐えられる カンタル線(1.4)と円筒形のセラミックを用いて ヒータを製作し、温度制御装置により設定温度にな るように調整した。そのセラミックヒータの概略を 図3に示す。

さらに、高速度カメラ(Phantom V7.0、Vision Research)を用い、10000fps(画像度512×386)の 撮影速度で非燃焼噴霧のシュリーレン及び散乱光撮 影を行った。撮影した画像は、画像解析ソフト (DIPP-MACRO、DITECT社)に入力し、噴霧特性解析を 行った。その撮影条件を表3に示す。可視化実験に 用いたインジェクター、噴射期間、噴射圧力は単気 筒エンジンと同条件で行った。また、噴射率測定に は図1の右上部に示すZeuchの測定原理を応用した DME 用の噴射率計(小野測器製)を用い、噴射率計

Table 3	Test	condi	tions
---------	------	-------	-------

Injection pressure、 MPa	20、25、30、35	
Nozzle diameter、 mm	0.5	
Number of hole	5	
Injection quentaty 、 ${\tt mm^3}$	110	
Ambient density、 kg/m ³	16	
Ambient temperature、 K	300、500、700	

Fig.3 Schematic drawing of ceramic heater

Fig.4 Injection characteristics

の下流に設置したDME流量計(小野測製FP-213)によ り実際の流量基準で噴射率の値を補正する方法を採 用した。⁽⁷⁾この際、エンジンシリンダー内圧力に等 しい4MPaの背圧を設定した。

図4には噴射量及び噴射率測定結果を示す。図か ら噴射圧力が高くなるほど噴射期間が短くなり、噴 射率のピークは高くなる傾向が見られる。本実験の 測定範囲において、噴射量はほぼ直線性を示した。

3.実験結果および考察

コモンレール式噴射装置を用いた単気筒エンジン において、エネルギー消費率に対する噴射圧力の影響を調べた結果を図5に示す。噴射圧力の上昇に伴 い、エンジン回転速度によらずエネルギー消費率が 減少する。特に、高回転、高負荷においてエネルギ ー消費率の改善が顕著になる傾向がある。また、同 エンジンにディーゼルコモンレール噴射装置を用い て、軽油運転を行った実験結果と比較すると、DME 運転時には高回転・高負荷において噴射圧力が高い ほど、エネルギー消費率が軽油運転時に近づく結果 が得られた。

図6は各噴射圧力における燃焼解析結果を示す。 噴射圧力を高くするとシリンダー内の最高圧力が増 加し、予混合燃焼における熱発生率が増加する。こ れは燃料噴霧の微粒化による蒸発と空気導入が促進 され、活発な燃焼が行われたことを示す。図7には 燃焼特性値に及ぼす噴射圧力の影響を示す。図から 噴射圧力の上昇に伴い、着火遅れ期間の変化は少な いが、燃焼期間が大幅に短縮され、また、噴射期間

Fig.5 Effect of injection pressure on BSEC

Fig.6 Comparison of cylinder pressure and RHR for various injection pressure

Fig.7 Effect of injection pressure on combustion characteristic values

も短くなる傾向を示した。この結果から、噴射圧力 の上昇による混合気形成の促進と噴射期間短縮化の 両方効果により燃焼が改善されることになる。一方、 図 8 にはエンジン回転速度を変化させた場合の噴射 圧力と NOx 排出速度の関係を示す。噴射圧力の上昇 に伴って各エンジン回転数において NOx 排出量が増 加する。また、ディーゼルエンジンの実験結果と比 較すると、低回転ではディーゼルの NOx より減少す るが、回転数が高くなると悪化する傾向を示す。こ れは、高回転、高負荷の場合、着火遅れ期間中に多 量の燃料が噴射され、予混合燃焼が活発化したため と考えられる。

次に、単気筒エンジンの圧縮時の温度、圧力を模 擬して、燃焼に至るまでの DME 噴霧の微粒化、蒸発 過程を調べた。ここでは、5 噴孔の内 2 噴孔の噴霧 のみを可視化した。図 9 は雰囲気温度 700K、雰囲気

Fig.9 Photographs of spray at different injection pressures

密度 16kg/m³の場合、噴射圧力の変化に対する散乱お よびシュリーレン画像を示す。散乱光の撮影結果か ら噴射圧力の上昇に伴い、液滴の到達距離が長くな る傾向が認められた。実機の圧縮時に近い雰囲気条 件(P_a=3.23MPa、T_a=700K)においても、微粒化され

た液滴が周囲の熱を受けて蒸発しながらも、噴霧先 端まで液滴が到達することで軽油噴霧と同様の挙動 を示した。また、シュリーレン撮影の結果から、散 乱撮影結果と同様に、噴射圧力が高くなるほど、液 滴と蒸気を含んだ噴霧の到達距離が長くなり、液滴 の蒸発が促進されることで噴霧の外周部において乱 れが大きい蒸気部が広がる傾向が見られた。このよ うな傾向は、図10に示した各噴射圧力に対する噴霧 の到達距離および体積の計算結果からも理解される。 散乱撮影による液相の到達距離はシュリーレン画像 と比べて短くなるものの、噴射終了時まで伸びる。 一方、噴霧体積を比べると、いずれの噴射圧力にお いても大きくなり、それは噴射圧力が高いほど顕著 になる。本実験の最も噴射圧力が高い 35MPaの場合 においで、噴霧同士の干渉もなく液滴の微粒化及び 蒸発が活発になることを確認した。図 11 は着火時に おける燃焼室と噴霧の位置関係の模擬図を示す。DME 噴霧は着火時 (-3degATDC)において、最も噴射圧力 が高い 35MPaにおいて、分散しながらもキャビティ ーの中に納まることで燃焼が改善されるものと考え られる。

図12にはDME エンジンとベースディーゼルエンジ ンの全負荷性能を比較した結果を示す。DME エンジ ン実験は排気温度上限を 700 として行った結果で ある。噴射圧力が高くなるほどエンジン出力は増加 し、低回転時ではディーゼルの場合、スモークリミ ットにより低くなっており、DME の場合は煙が発生 しないことから十分トルクアップが可能である。

Fig.12 Output performance comparison of DME and base diesel engine

また、高回転の噴射圧力 35MPa の場合は、エネルギ ー消費率はやや高くなるものの、ベースディーゼル と同等の出力を得ることができた。今後、更なる高 圧噴射により、性能向上が可能であると思われるが、 同時に噴射圧力に適した燃焼室形状の最適化が必要 である。

4.まとめ

コモンレール式噴射装置を用いて単気筒 DME 圧縮 着火エンジンの実験を行うとともに、散乱光とシュ リーレン法により、高温高圧場での DME 噴霧の分散、 蒸発過程を高速度撮影し、噴射圧力とエンジン性能 および燃焼特性との関係を調べた結果、次のような 知見を得た。

(1)噴射圧力 35MPa の場合、エネルギー消費率は やや高いものの、ディーゼルと同等の出力を得る。 (2)噴射圧力が高くなるほど、予混合燃焼が活発 になり燃焼期間が短縮する。NOx 排出量は増加する が、高速高負荷域においてもエネルギー消費率は向 上する。

(3)噴霧の撮影結果から噴射圧力 35MPa までは、 噴霧同士の干渉もなく液滴の微粒化および蒸発が活 発になる。

(4)DME 噴霧は圧縮上死点近傍相当の高温高圧場 において、微粒化された液滴が周囲の熱を受けて蒸 発しながらも、噴霧先端まで液滴が到達し、軽油噴 霧と同様の挙動を示す。

最後に、本実験に協力を頂いた交通研の小林 啓 樹氏に心から感謝の意を表す次第である。

参考文献

(1) Christensen, R., Sorenson, S. C., Jensen,M. G., Hansen, K.F. : Engine Operation on DimethylEther in a Naturally Aspirated DI Diesel Engine,

SAE Paper、 No.971665、 pp. 101-110

(2) 陳之立、金野満、梶谷修一、ジメチルエーテル(DME)を燃料とした圧縮着火直接機関の性能と排気特性(第1報、レトロフィット時の機関性能及び排気特性)第14回内燃機関シンポジウム講演論文集、No.41、pp235-240(1997)

 (3) 若井謙介、西田恵哉、吉崎拓男、廣安博之、 直噴ディーゼルノズルから噴射された Dimethyl Ether (DME)の噴霧特性に関する研究、自動車技術論 文集、vol.30、No.1 (1999)

(4) 鈴木達明、米谷宏明、福谷格、圧縮着火機関
における DME(ジメチルエテール)の適用、自動車
技術会講演前刷集、No.86-98(1998)

(5) 梶谷修一、中山満茂、DME を用いたディーゼ ルエンジンの可能性と問題点、自動車技術会、Vol.52、No.7 (1998)

 (6) 佐藤由雄、野田明、坂本高志、ジメチルエー テルを燃料とする環境低負荷型ディーゼルエンジン
の研究、自動車技術会講演前刷集、2005152(1998)
(7) Tadashi、I、Yukimitsu、O.、Akio、T、Yoshio、

S., Jun, L. and Takeyuki, K. : Measurement of Rate of Multiple Fuel Injection with Diesel Fuel and DME, JSAE Paper 2001-01-0527

(8) Yoshio S., Akira N., Takashi S., Yuichi G.: Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging, SAE Paper 2000-01-1809

(9) Yoshio Sato, et al., : Effects of Fuel Injection Characteristics on Heat Release and Emission in a DI Engine Operated on DME, SAE Paper, No2001-01-3634, (2002)

(10)瀬戸雄史、徳丸武志、高瀬繁寿、ジメチルエ ーテルエンジンの燃焼改善、自動車技術会講演前刷 集、No.47-03 (2003) (11)安乗一、佐藤由雄、大聖泰弘、ジメチルエー テル圧縮着火機関の燃焼改善(噴射圧力の影響)自 動車技術会講演前刷集、No.62-03(2003) (12)安乗一、佐藤由雄、高柳智光、大聖泰弘、DME を燃料とするクリーンディーゼルエンジンの研究開 発(第2報 噴射圧力の真匠化による供能向よ) 六

発(第3報、噴射圧力の高圧化による性能向上)交 通安全環境研究所研究発表会、第3回(2003)