California and U.S. Initiatives to Mitigate Greenhouse Gas Emissions in the Transportation Sector

National Fuel Cell Research Center

UCIrvine | UNIVERSITY OF CALIFORNIA

Setting the Stage

Primary Energy → Engine → Societal Use

Combustion

Vehicle Demand Forecast

- OECD vehicle populations are huge and still growing
- Demand increase is tremendous in Eastern Europe, Former Soviet Union, China, Latin America, Other Asia, ...

Vehicle Demand Forecast

Year	World Population (Billions)	Availability of Automobile 0 20 40 60 (%)	World Vehicle Ownership (Billions) Environmental Impact
2000	6.1	20%	0.74 1.0
2050	8.9	60%	3.24 4.4

Toyota estimates, 2006

Energy Demand Forecast

World Energy Demand

[Million B/D Oil Equivalent]

Greenhouse Gas (GHG) Intensity Forecast

- G' WORLD GHG INTENSITY
- O [Billion Metric T/Y]

SOURCE: IEA WORLD ENERGY OUTLOOK

Forces for Change

```
#1 Green House Gas Intensity (1990)
```

#2 Pollutant Impacts (1940)

#3 Hubbert's Curve (1980)

Hubbert's Curve

Forces for Change

```
Greenhouse Gas Intensity (1990)
#2 Pollutant Impacts (1940)
                     Paradigm Shifts
#3 Hubb
             Electric Power
             Transportation
#4 Fuel
               - Fuel
               - Engine
#5 Natid
            Conservation

    Electrical Power

    Personal Vehicle

             Building Design
              Urban Design
```

California Leadership

California Leadership

Recent (2003-2008) California Global Climate Initiatives

AB 1493 (2003): (Pavley) mandates 30% reduction in GHG emissions for

new light duty vehicles by 2016

• AB 1007 (2005): requires plan to replace gasoline use with low carbon alternatives

- AB 32 (2006): "Global Warming Solutions Act" aggressive goals for GHG reduction by 2020-50
- SB 1368 (2006): GHG emissions standards for **IOUs and POUs**
- AB 2021 (2006): Energy efficiency for POUs
- 55%

California Carbon Dioxide Emissions by Energy Sectors, 2001 383.1 million metric tons carbon dioxide

- AB 2160 (2006): Green Building acquisition financing for state facilities
- SB 107 (2006): Accelerated RPS Goals (20% by 2010)
- SB 1 (2006): Renewable goals for residential and commercial structures
- AB 2778 (2006): Self generation incentive program for fuel cells and wind
- SB 1250 (2006): PIER renewables incentive program
- EO (2007) Governor implements Low Carbon Fuel Standard
- ARB (2008) AB 32 Plan released (June 26)

Industrial □ Residential

Commercial ■ Electricity

15%

Transportation

United States Initiatives

Renewable Portfolio Standards (RPS)

What Alternatives Are Available?

Combustion

Fossil Fuel

- 80% of World's Power
- 94% of World's CO₂ Emissions
- 90% of World's Pollutant Emissions

Combustion
Heat
Hot Gases
Turbine
Generator
Electricity

• Fuel Cell

Fossil Fuel

Electrochemistry

Electricity

Fuel Cell Alternative

Transportation Fuel Cells

Fuel Cell Vehicles

Fuel Cells – All major auto manufacturers pursuing

GM_Opel Hydrogen 1

Honda FCX V3

GM Sequel

GM Equinox

Mazda Premacy

Nissan FCV

Ford P2000 H2

Honda FCX Clarity

GM HyWire

Toyota Fine

Hyundai iBlue

Toyota FCHV

© National Fuel Cell Research Center, 2008

CO₂ Emission: Fuel & Vehicle

U.S. Department of Energy Initiative for Advanced Power

Plants

100-1000 MW

- Natural Gas
- Coal

- High-Efficiency Electrical Generation
 - -Natural Gas: 75%
 - -Coal: 60%
- Zero Emission of Criteria Pollutants
- CO₂ Capture for Sequestration
- Co-Production of Hydrogen & Other Fuels

CO₂ Emission: Fuel & Vehicle

Energy Station Concept

Renewable Residential Fuel Cell System

Penewable Residential Fuel Cell System – 4.2 kW RFC Supply & Demand Power Flow:

Simplified scheme, adaptable to include other technologies

GHG emissions with the adoption of hydrogen infrastructure for passenger vehicles in Southern California

Spatial & Temporal Analyses

$$\frac{\partial Q_{m}^{k}}{\partial t} + \nabla \cdot \left(uQ_{m}^{k}\right) = \nabla \cdot \left(K\nabla Q_{m}^{k}\right) + \left(\frac{\partial Q_{m}^{k}}{\partial t}\right)_{\substack{sources/\\ sinks}} + \left(\frac{\partial Q_{m}^{k}}{\partial t}\right)_{aerosol} + \left(\frac{\partial Q_{m}^{k}}{\partial t}\right)_{chemistry}$$

 Accounting for spatial & temporal variations of emissions of all hydrogen infrastructure (generation, distribution, end-use)

 Δ peak 8-hr O₃ for H₂ vs. Conventional Scenario

Many Alternative Fuel Options

- Hydrogen
 - Renewable hydrogen
 - Sustainable hydrogen
 - Less sustainable hydrogen
- Bio-fuels
 - Biodiesel
 - Ethanol, Methanol
 - Hydrogen
- Electricity
 - Renewable electricity
 - Sustainable electricity (e.g., nuclear)
 - Less sustainable, less environmentally sensitive electricity
 - Evolving as the "dual" fuel

No alternative fuel is the "silver bullet" BUT electricity use in transportation is clearly desirable

Source: Lisa Benson, Los Angeles Times, 16 April 2008

Energy / Consumer / Environmental analyses

Technology	Meets User Requirements	Fulfills Personal Mobility	Eliminates Criteria Pollutants	Eliminates GHG Emissions	Eliminates Fossil Fuel Use	Provides Energy Security
Traditional gasoline car	Yes	Yes	No	No	No	No
Hybrid	Yes	Yes	No, but better	No, but better	No, but better	No, but better
Hydrogen	Yes (but technology hurdles)	Yes	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes, if renewable, nuclear
Bio-Fuel	Yes	Yes	No	No	No, not enough feedstock	Yes
Electric	No (range & recharge limits)	Yes	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes
Mass Transit (bus)	Yes	No	No, but better	No, but better	No, but better	No, but better
Mass Transit (electric rail)	Yes	No	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes
PRT	Yes (shipping, no)	Yes (if stops convenient)	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes, if renewable, nuclear	Yes

- Energy / Consumer
 Environmental analyses
 identify electrification as desirable for transport
- Assess all major primary energy sources
- Apply to moving vehicle
- Analyze criteria pollutant and GHG impacts of primary energy conversion, transmission, distribution, and end-use

Energy / Consumer / Environmental analyses – identify electrification as desirable for transport

Vehicle (study)	Fuel Energy (MJ/MJ)	Fuel Carbon (g C/MJ)	EPA City (MJ/km)	EPA Highway (MJ/km)	Grams C/km (gC/km)	Total Energy (MJ/km)	Total C (gC/km)
BEV (UCI)	1.25	51.5	0.582	0.443	0	1.17	26.8
BEV (ADVISOR)	1.25	51.5	0.471	0.374	0	0.96	22.0
BEV (MIT)	1.16	54	0.579	0.422	0	1.10	27.5
BEV (GM)	1.45/1.13	49/36					
Current gas (MIT)*	0.211	4.9	3.195	2.152	53.3	3.30	66.7
Current gas (GM)§	0.23	5.5	3.79 [†]	3.79 [†]	70.1	4.66	90.9
Diesel Hybrid (MIT)	0.139	3.3	1.029	0.788	19.2	1.05	22.2
Diesel Hybrid (GM)	0.19	4.4	2.65 [†]	2.65 [†]	52.9	3.15	64.6
H ₂ Fuel Cell (MIT)	0.77	36	0.905	0.684	0	1.43	29.0
H ₂ Fuel Cell (GM)	0.81	31.1	1.67 [†]	1.67 [†]	0	3.02	51.9
TRV (UCI)	1.25	51.5	0.446	0.362	0	0.92	21.0
TRV (ADVISOR)	1.25	51.5	0.403	0.336	0	0.84	19.2

^{* 1996} Toyota Camry

[§] GM full-size pick-up truck

[†] The GM study did not differentiate between city and highway driving

- Energy / Consumer
 Environmental
 analyses identify
 electrification as
 desirable for
 transport
- Third Rail Vehicle (TRV) idea
- All auto features of personal interest
- Charge on major electrified roads 'e-road'
- BEV of 'e-road'

Thank you for Your Attention!

