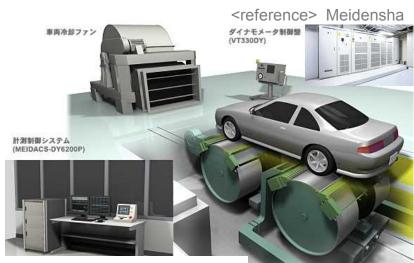
シャシダイナモメーター試験で運転する ドライバの標準化検討

一 人間の運転動作を再現したドライバモデル による運転ロボット操作 一

環境研究部 主任研究員 奥井 伸宜

講演内容

- 1. はじめに
- 2. ドライバモデル構築
- 3. 評価条件
- 4. 評価 & 結果
- 5. まとめ


1. はじめに

背景

→一般ユーザーが自動車を運転する際の燃料消費率(燃費) 及び排出ガスは、「カタログ値と乖離している」との声が 挙がっている <reference> M

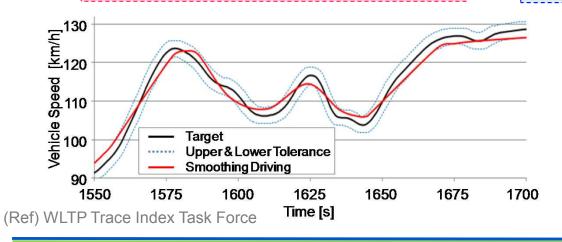
【カタログ値】シャシダイナモメーター(CHDY)試験

・道路条件・・・ 市街地+郊外+高速パターン、勾配なし

· 気象条件 · · · 25℃、晴天

車両空調・・・ 使用なし

運転特性・・・ プロドライバ操作


シャシダイナモメータ一試験

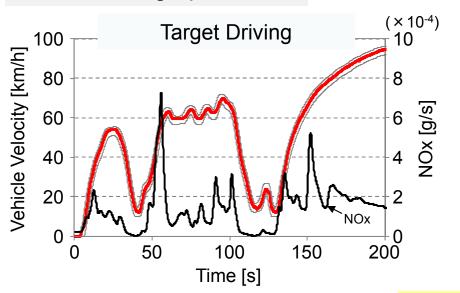
【カタログ値】シャシダイナモメーター(CHDY)試験

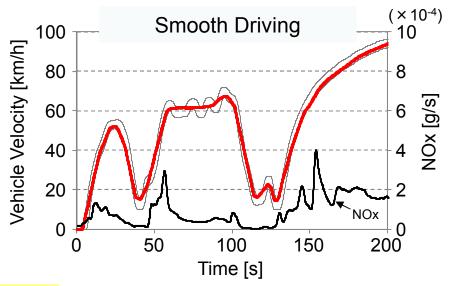
- •道路条件
- 市街地+郊外+高速パターン、勾配なし
- •気象条件
- ··· 25°C、晴天
- •車両空調
- ・・・ 使用なし
- •運転特性
- ・・・ プロドライバ操作

基準車速に沿った運転 (許容範囲が設定)

実路走行環境下における 代表値を採用

基準車速の許容範囲内で、 緩やかな加減速運転を 行うことが可能


* * * 燃費 & 排出ガスに 影響を及ぼす


<例えば> 運転挙動の影響 (CHDY運転)

Vehicle Weight [kg] (Unloaded)	1,130
Body Size [m]	L:4.06/W:1.70/H:1.53
Power Unit	Diesel (1.5L/Turbo)
Transmission	6AT
Drive Line	FF
Emission Device	EGR, DPF, DOC

≪WLTC (High-phase) ≫

[Fuel Economy] 25.4 [km/L]

6.3% up

[Fuel Economy]

27.1 [km/L]

[Emission(NOx)] 0.058 [g/km] \rightarrow 41.5% down \rightarrow [Emission(NOx)] 0.041 [g/km]

燃費、排出ガス試験法の高度化を目指して

- ▶道路条件、気象条件、車両空調に対する取り組み
 - ➡ RDE(Real Driving Emissions)では、____ これらの影響を考慮している

講演2で取り組みを紹介

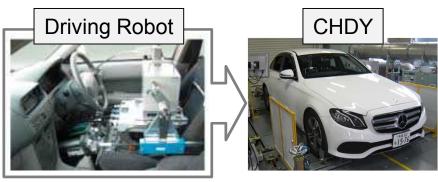
- ▶運転特性に対する取り組み
 - WLTP(Worldwide harmonized Light vehicles Test Procedure) では、

モード走行をより精確に評価する対策として、「(SAE J2951)ドライビングインデックス」を基に、 モード走行後の走行状態を判定する手法を導入している

人間が運転すると. . .

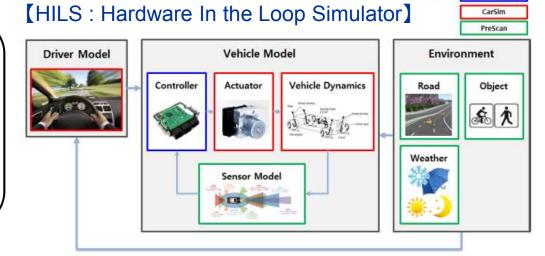
公平性を求め厳密化したために、再試験が多発すれば、 <u>認証試験工数が増大する</u>恐れがある

燃費、排出ガス試験法の高度化を目指して


目的

CHDY試験を公平かつ効率的に 実施できるよう、運転ロボットを 用いたドライバの標準化を検討

- ▶下記①&②を報告する
 - ①人間の運転動作を再現した ドライバモデルを構築
 - ②ドライバモデルを搭載した運転ロボットでCHDY試験を実施し、人間の運転動作と比較


2. ドライバモデル構築

従来ドライバモデル

車両開発や研究を効率良く行うため、HILS等を用いた 仮想車両によるバーチャル走行テストが普及している。

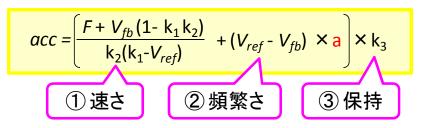
従来ドライバモデル

- ・エンジン等の動力特性 に合わせた<u>アクセル開度</u> マップが必要
- 数多くあるパラメータの 調整が必要

運転ロボットに適用

- 」・パラメータの調整には、作業者の技量差を生じる : 公平×
- ●車両一車種を走行させるためには、数週間を要する:効率×
 - → <u>従来ドライバモデル</u>の指令で運転ロボットを操作した場合、 公平かつ効率的に評価することが困難である

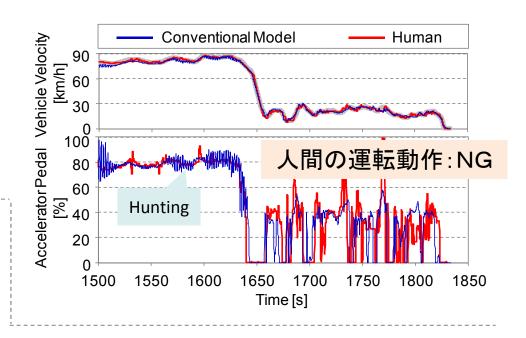
Matlab/Simulink

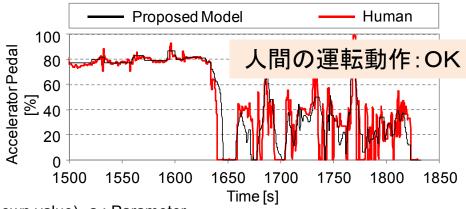

提案ドライバモデルの構築(HILS運転)

従来ドライバモデル

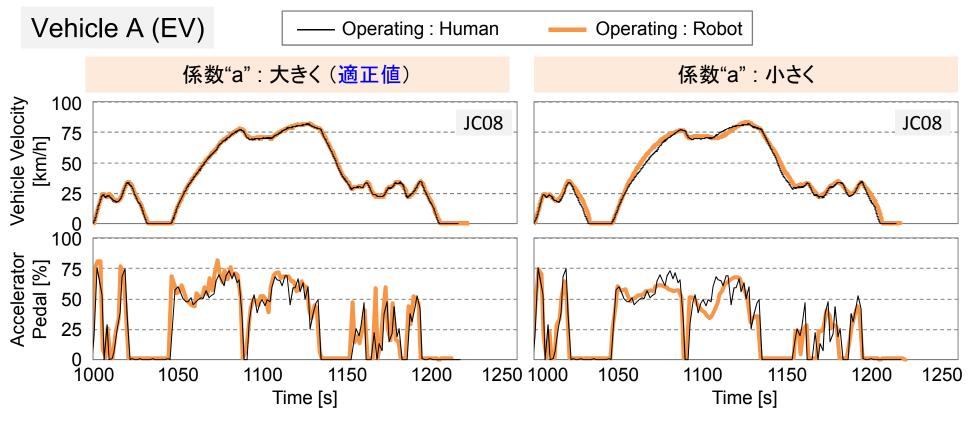
- アクセル開度マップが必要
- 数多くあるパラメータの 調整が必要

提案ドライバモデル


- マップやパラメータを廃止
- ペダル操作の三要素の ロジックを採用

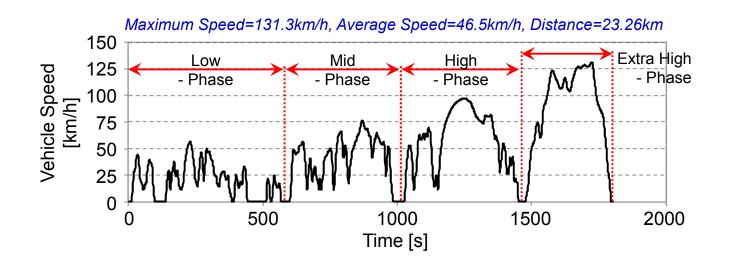


 V_{fb} : Feedback Speed[m/s], V_{ref} : Reference Speed[m/s],


F: Vehicle Force[N], k₁, k₂, k₃: Value with Vehicle Speed (known value), a: Parameter

11

提案ドライバモデルの動作例(CHDY運転)



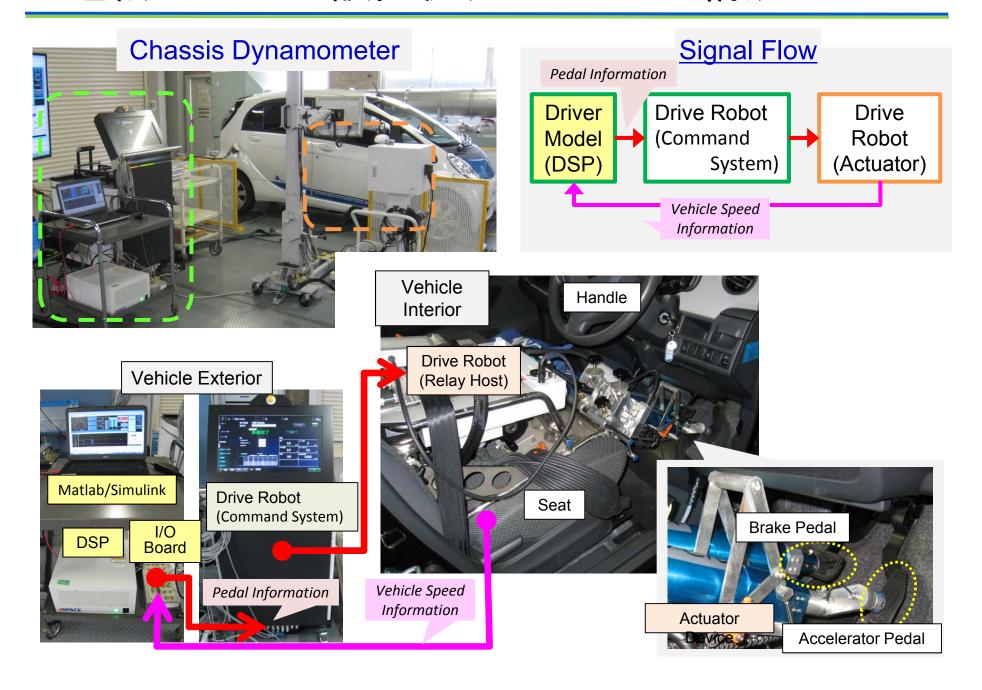
- 1つのパラメータ(係数"a")で、人間の運転動作を再現できる
 - ●作業者の技量差を生じにくい : 公平○
 - •車両に運転ロボット設置後、試験がすぐに行える:効率〇
- → 提案ドライバモデルの指令で運転ロボットを操作した場合、 公平かつ効率的に評価することが可能となる

3. 評価条件

走行モード

- ➤ WLTC(Worldwide-harmonized Light vehicles Test Cycle)を使用
- ▶4Phaseを走行 (参考:日本のCHDY試験法は、Extra High Phaseは適用外)
- ▶車両のコールド状態から試験開始

車両諸元


▶ 2ペダル(アクセルペダル、ブレーキペダル)から成る車両を選定

	【Vehicle A】	【Vehicle B】	【Vehicle C】	[Vehicle D]
Vehicle Weight [kg] (Unloaded)	1,100	1,410	1,080	1,800
Body Size [m] (L/W/H)	3.39/1.47/1.61	4.48/1.74/1.49	4.19/1.68/1.55	4.93/1.85/1.45
Power Unit	【EV】 Motor	【PHEV 】Motor + Gasoline(1.8L/N.A.)	【Gasoline】 Gasoline(1.5L/N.A.)	【Diesel】 Diesel(2.0L/Turbo)
Transmission		CVT	CVT	8AT
Drive Line	FR	FF	FF	FR
Tire Size	175/55R15	195/65R15	185/55R15	225/55R17

Driving Condition : HEV mode

Kei Car: Driving WLTC included Extra-High Phase

運転ロボットの設置状況&システム構成

4. 評価&結果

ドライビングインデックス (SAE J2951)

✓ Energy rating (ER) : Change rate on cycle energy

目標走行と実走行との仕事量比率

- ER = $(CE_D CE_T) / CE_T*100$
- Cycle energy : CE = $\Sigma W_i = \Sigma [(F_0 + F_1^* V_i + F_2^* V_i^2 + 1.015 * ETW * a_i) * d_i]^+$
- Engine work increment : W_i = F_{ENGi} * d_i
- Engine force : $F_{ENG} = [F_0 + F_1^*V + F2^*V^2 + 1.015 * ETW * a]^+$
- ✓ **Distance rating (DR)** : Change rate on the distance

目標走行と実走行との距離の比率

- DR = $(D_D D_T) / D_T * 100$
- ✓ Energy economy rating (EER) : Change rate on the distance per energy
 - EER = [1 (DR / 100 + 1) / (ER / 100 + 1)] * 100

DR/ERによる単位仕事当たりの走行距離の比率

- Combined ER and DR
- ✓ **Absolute speed change rating (ASCR)** : Change rate on the integral of
 - ASCR = $(ASC_D ASC_T) / ASC_T * 100$

the absolute magnitude of acceleration

• ASC = $\angle t \times \Sigma |a_i|$

目標走行中の加速度と実走行中の加速度の累乗比率

- Integrate the acceleration (= speed fluctuation)
- ✓ **Root mean squared speed error (RMSSE)** : Speed deviation

絶対速度差の二乗平均平方根

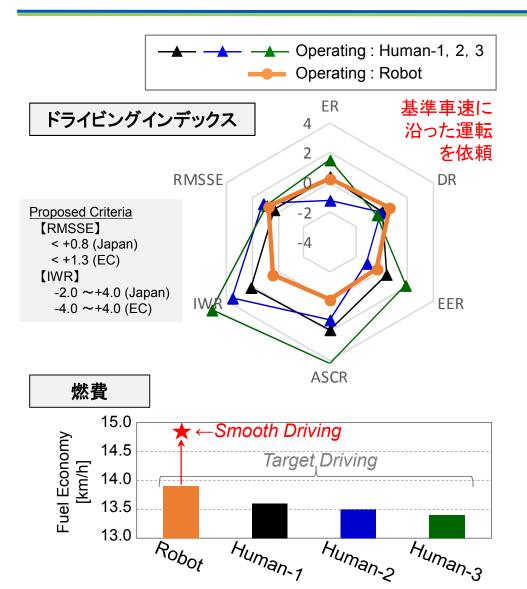
RMSSE = $\sqrt{(\Sigma(VD_i - VT_i)^2)} / N$

Integrate the difference between target speed(VT) and actual speed(VD)

[Proposed Criteria] < +0.8 (Japan) < +1.3 (EC)

✓ Inertial Work Rating (IWR) [Proposed Criteria]

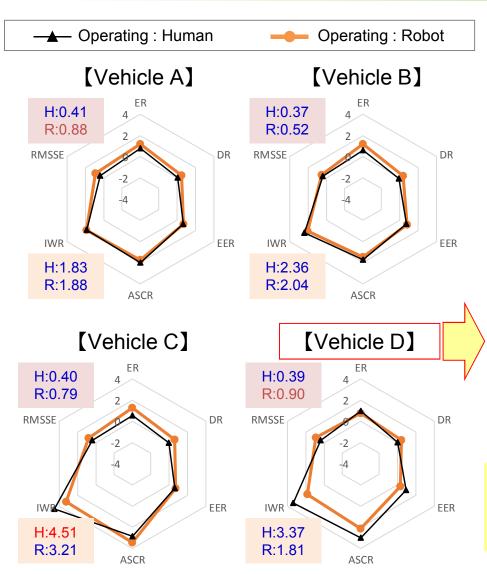
• IWR = $(IW_D - IW_T) / IW_T * 100$ -2.0 ~+4.0 (Japan)


• IW = Σ [M a_i d_i]⁺

-4.0 ~+4.0 (EC)

目標にかかわる仕事量の変化率

WLTP Trace Index Task Force


人間の運転動作の再現(ドライバモデルの調整)

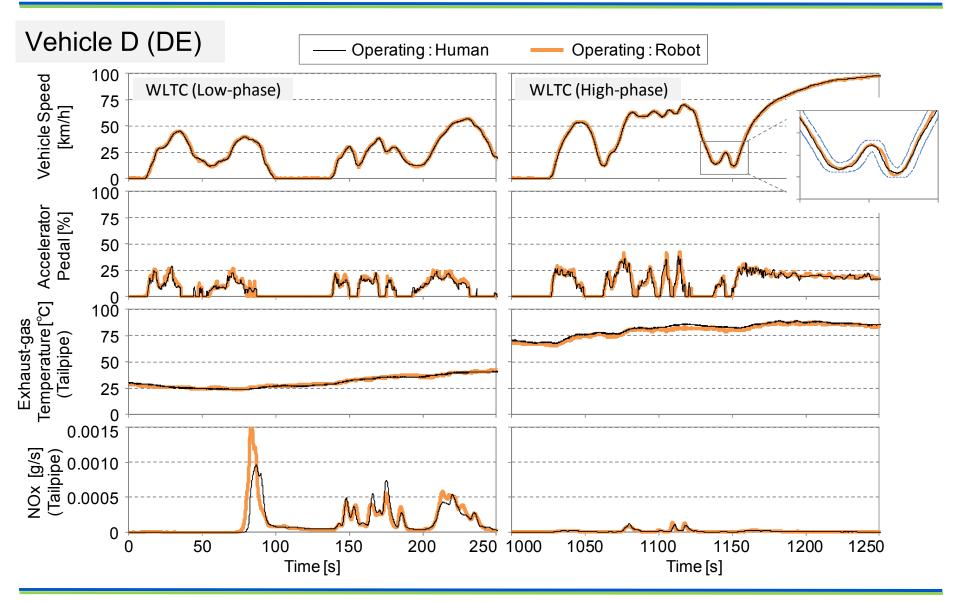
	[Vehicle E]
Vehicle Weight [kg] (Unloaded)	1,440
Body Size [m] (L/W/H)	4.54/1.84/1.705
Power Unit	【Gasoline】 Gasoline (2.0L/N.A.)
Transmission	6AT
Drive Line	FF

Criteriaを満たすHuman-1 をモデルで再現するように、 係数"a"を調整し決定する

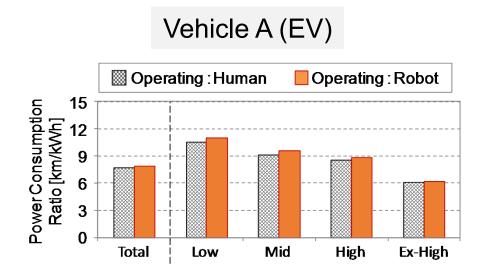
【結果】ドライビングインデックス

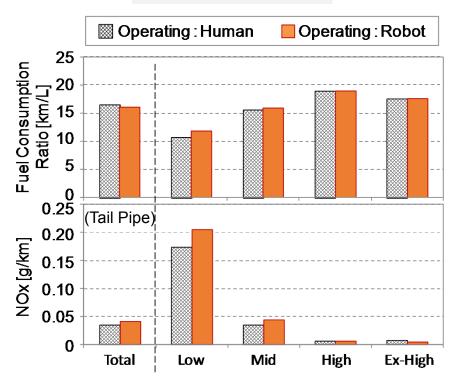


Proposed Criteria
[RMSSE] < +0.8 (Japan) / < +1.3 (EC)
[IWR] -2.0 ~+4.0 (Japan) / -4.0 ~+4.0 (EC)

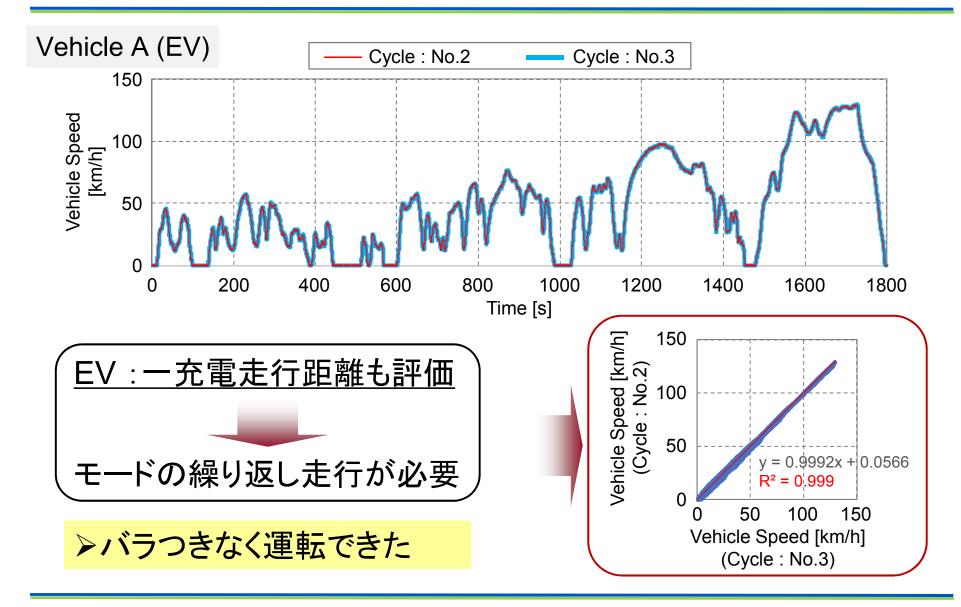


人間の運転動作を ドライバモデルで再現できた


【結果】車両性能などの履歴


【結果】車両性能などの履歴

【結果】電費、燃費



- ▶人間の運転動作を、 運転ロボットで再現できた
- ▶コールドスタートに対しても、モデルの変更なしに運転できた

【結果】運転ロボットによるモード繰り返し評価

5. まとめ

調整が簡便なドライバモデルを新たに構築した

本モデルで運転ロボットを制御すれば、

- ▶座席設置後すぐに、車両走行が行えることを確認した
- ▶人間と同様の運転動作を確認し、同等の走行性能が得られた
- ▶サイクル毎の性能のバラつきが少ないことを確認した

提案ドライバモデルを標準化し運用すれば、

認証試験時における公平性、効率性が確保でき、 リアルワールド走行時の車両性能に一歩近づくと考えられる

ご清聴ありがとうございました