③ ハイブリッド重量車に対する回生エネルギの適用性に関する研究

環境研究領域 ※奥井 伸宜 新国 哲也 河合 英直

1. はじめに

輸送機器部門のエネルギの1/3程度を消費する貨物 自動車の中でも、特に長距離貨物自動車(以下、重量 車)の省エネルギ化が望まれている。走行に必要なエ ネルギが大きい重量車の電動化 (EV) はモータやバッ テリ性能等の問題から課題が多く、ハイブリッド(以 下、HEV)化が現実的な技術として挙げられる。しか し、現状のHEV システムでは、発進・停止の頻度が多 い市街地走行ではある程度の燃費改善効果が見込め るが、高速一定速度走行の場合には十分な燃費向上効 果が得られていない¹⁾。本研究では、地球環境改善に 対する解を提示するため、高速走行時の燃費を改善 し、重量車の実用燃費を向上させることを目的とした 新たなハイブリッドパワートレインシステムを提案 する。さらに、将来、本システムのような高速走行時 での燃費改善を目的としたハイブリッドシステムが 市場に投入された場合でも、実走行時における燃費、 排出ガスの改善効果代を適正に評価可能な試験法を 検討することを目的としている。

初報となる本報では、回生機会の少ない高速走行時 に得られる回生エネルギ量に着目し、新方式ハイブリ ッドシステム成立性を、エネルギ(バッテリ)マネジ メントの立場から検討するため、車両走行時のエネル ギ収支が計算できる簡易シミュレーションを作成し、 検討を行った。さらに、本ハイブリッド重量車のシス テム構成の検討だけでなく、各種ハイブリッド車の燃 費・排出ガス等の評価法を検討する目的で構築してい る「台上ハイブリッド試験装置」について紹介する。

2. 回生エネルギ適用性の新提案

一般的に、一定速度走行時に車両が必要とする出力 は大きくなく、現状の内燃機関サイズより小型化して も十分に走行可能である。一方、発進時や加速時、急 な登坂などの過渡状態で大きな出力、特にトルクを必 要とする場面での要求トルクに応えるためには、小型 内燃機関ではトルク不足が発生する。ここで、全負荷 性能試験結果の一例²⁰を図1に示すが、小排気量過給 (ターボチャージャー)エンジンでは、トルク増大ま での応答時間が長く、大排気量自然吸気エンジンが発 生する低速トルクを満たすことができない。このた め、重量車用内燃機関において十分な小排気量化(ダ ウンサイジング化)が難しく、燃費向上が図れない。

提案する「ハイブリッドエンジン(Hybrid Electric Engine:以下、HeE)システム」は、図2、3に示すよ うに、小排気量過給エンジンによる過渡状態でのエン ジントルクの不足分を補うため、電動過給機(電動ブ ースター)を活用する。電動過給機により任意のタイ ミングで過給でき、電源には従来の24Vバッテリでは なくハイブリッド用高電圧バッテリを用いるため、極 めて高い応答性で過給できる。小排気量エンジンに電 動過給機を採用した際には、過渡応答発生時には短時 間で低速トルク不足が補え(図1青色枠内)、高速巡 航時にはエンジン負荷の高い領域、つまり、エンジン

Fig.2 ハイブリッドエンジンシステム (コンセプト)

Fig.3 ハイブリッドエンジンシステム (構造)

の高熱効率領域での運転が可能となる。また、電動過 給機の電力消費は小さいため、回生機会の少ない高速 走行時に得られる回生エネルギ量で長時間 電動過給 機の稼働が可能であり、比較的小容量のバッテリ搭載 量でも出力性能を十分に確保できると考えられる。

3. 新方式ハイブリッドシステムの成立性検討 3. 1. シミュレーションの作成

車両走行時のエネルギ収支を把握するため、一般的 な車両の運動方程式に、トランスミッションモデルを 組み合わせた車両モデルを作成した。各システム効率 は理想状態の100%と仮定し、変速時のクラッチ接合に よる滑り損失は無視した。

車両モデル検証には、7段ギアを備えた車両総質量 25ton車を選定し、車両の半積載状態(17ton)で行っ た。実際に供試車両をシャーシダイナモメータ上で重 量車用燃費・排ガス試験モード(JE05モード)を走行 した際の車速、シフトパターン、トランスミッション 直後(タイヤ側)の仕事率の結果を、計算結果と比較 し図4に示す。JE05モードの一部分を示すが、本重量 車モデルの仕事率は実車値を追従している。しかし、 僅かであるが変速時の仕事率には差異が認められ、ク ラッチ滑りの有無による影響と思われる。

Fig.5 電動過給機モデルの一例 3)

(1) ハイブリッド重量車(HEV) モデル

今回採用した HEV モデルは、走行中に必要なトルク をエンジンと HEV 用モータが一定割合で分割するパラ レル式 HEV モデルとした(図3一点鎖線外参照)。HEV 用モータの最大トルク、バッテリの出力密度を考慮 し、各々の能力以上の力行/回生エネルギに対し制限 を施した。車両制動時には、機械ブレーキ、回生ブレ ーキ、エンジンブレーキが作用するが、回生ブレーキ は協調回生ブレーキモデルとした。クラッチ接合時に は、常にエンジンブレーキが作用するため、減速エネ ルギからエンジンブレーキを除いたエネルギ分を、 HEV 用モータが最大限回生するモデルとした。

(2) ハイブリッドエンジン重量車(HeE) モデル

前節のHEV モデルに電動過給機モデルを追加し、図 3 に示すHeE システムを模擬した。本電動過給機モデ ルは、過給機メーカの文献 3)を参考に、図5 に示す消

Fig.6 HEV モデル、HeE モデルのフローチャート

費電力+2kW で吸気アシストを得る仕様とし、車両加速 時にエンジン回転数 2000rpm まで稼働する設定とし た。それ以外の運転状態では、図3のコントロールフ ラップを開き、電動過給機の駆動を休止させ、ターボ チャージャーのみを稼働させた。

図6に、HEV モデルおよびHeE モデルのフローチャ ートを示す。エネルギマネジメントを考慮し、バッテ リSOC レベルが走行前と走行後で同等となるよう、エ ンジンとHEV 用モータの力行トルク配分を調整した。 特に、HeE モデルではHEV 用モータと電動過給機を活 用するが、電動過給機に優先的に電力を使い、残りの 電力分でHEV 用モータを稼働させるモデルとした。

3.2.シミュレーションによる検討

HeE 車には、高速走行時のエネルギ回生量に見合っ た小容量バッテリの搭載を前提としており、市販小型 HEV トラック用のHEV 用モータ(最大出力35kW、最大 トルク 200Nm/1700rpm、重量 40kg)およびバッテリ (5.5Ah、66Wh/kg、2600W/kg、重量 40kg)を搭載した。 HEV 用モータは、全ギア、全回転数でアシストを行う が、減速時15km/h 以下ではクラッチ接合時であって も回生を停止させ、車両停止時にはエンジンを停止さ せた。走行開始時のバッテリ SOC レベルは、60%とし た。シフトパターン、車両質量およびエンジンサイズ は、重量車モデル計算に用いた車両諸元と同等として 計算している。また、HEV 車においても同様とした。

(1)システム成立性検討1(市街地~高速走行)

JE05モード走行時のHEV 車およびHeE 車のバッテリ SOC 推移、電動過給機およびHEV 用モータの力行/回生 電力量の計算結果を図7に示す。エネルギマネジメン トを考慮したため、モード走行終了時のバッテリSOC レベルは、走行前の60%に回復している。HeE 車の電 動過給機は、モデル設定条件通りの稼働を行ってお り、HEV 用モータの約1/10の電力量で稼働している。 電動過給効果により、図中AのようにHEV 用モータの 力行電力量がHEV 車に比べ減少した。特に、車両発進、 再加速時での減少が顕著となり、図中BでのHeE 車の バッテリSOC 減少幅が改善することが確認できた。

図8には、JE05モード走行時のトランスミッション 直前(エンジン側)のHEV車およびHeE車の車両、エ ンジン、HEV用モータの仕事率をそれぞれ示す。HeE 車に関しては、HEV用モータの仕事率低減が確認でき、 特に車両発進時、再加速時でのHEV用モータの仕事率 低減が顕著となった。これは、電動過給効果によるエ ンジン低速トルク改善によるものと考えられる。

JE05 走行時のエンジン車、HEV 車および HeE 車の仕 事量分割割合を、エンジン車の仕事量を 100%として整 理し、図 9 に示す。HEV 車のエンジン仕事量割合は

87.6%、HEV 用モータ仕事量割合は 12.4%となった。一 方、HeE 車のエンジン仕事量割合は 92.4%、HEV 用モー タ仕事量割合は 7.6%となり、HeE 車は電動過給効果に よるエンジン低速トルク改善により、HEV 用モータ仕 事量割合が HEV 車に比べ約半減することが分かった。

(2)システム成立性検討2(高速走行のみ)

JE05 モードの高速走行部(1500~1640 秒)を繰り 返し 10 回走行する任意の高速走行モードを作成し、 走行結果を図 10 に示す。HEV 用モータ仕事量割合は HEV 車で 3.2%、HeE 車で 1.3%とともに少ないが、HeE 車は電動過給効果により、その割合が半減した。

以上より、HEV 車、HeE 車ともに、高速走行中に回 生できる僅かなエネルギをバッテリに溜めるが、その エネルギを主に電動過給機に使用する HeE 車は、バッ テリ容量が小さくても、電動過給効果を長時間に渡り 持続させることができる。そのため、小排気量エンジ ンが採用でき、高速走行時でのエンジン高効率化が図 れることから、燃費改善に寄与できると考えられる。

4. 新方式ハイブリッドシステムの燃費効果検討

HeE 車に最適となる小排気量エンジンを導入し、エ ンジン高効率化による燃費改善効果を検証するため、 台上ハイブリッド試験装置の整備を進めている。

4. 1. 台上ハイブリッド試験装置の全体概要

エンジン試験用、モータ試験用の各動力計の連結を ソフトウェア上で行い、車両質量、パワーバランス、 バッテリ能力および動力伝達機構などを自由に構成 できる装置である。シリーズ HEV、パラレル HEV、各々 を組み合わせた HEV システムやそれ以外の新たな HEV システムにもソフトウェアの変更により対応できる。

本システムは、運転手を代行するドライバモデルか らアクセル開度情報を受け、HEV 用制御モデルがエン ジン用ECUおよび駆動モータ用インバータへ指令を行 う。車両モデルが走行時の負荷を演算し、各動力計は エンジンおよび駆動モータへ与えるべき負荷指令を

Fig.11 台上ハイブリッド試験装置

行う。一方、回生時の情報は回生モデルで演算され、 HEV 用制御モデルと連携して充放電装置へ充電情報を 与え、バッテリに給電する。本試験装置作動時には、 走行中のエンジン、駆動モータ、バッテリの状態をリ アルタイムに観察することができる。

4. 2. 進捗状況

パラレル式ハイブリッドシステムの構築を目指し、 昨年度は図11に示すように、実機モータ(M/G)をダイ ナモメータ(DY2)と接続し、ハイブリッド制御モデル と車両モデルから成るシステムを構成した。現在、ダ イナモメータ(DY1)に実機エンジンを接続し、システ ム調整を行っている。

5. まとめ

重量車のエネルギ効率向上を狙った新方式ハイブ リッドシステムを提案し、そのシステム成立性を検討 するため、簡易解析モデルを構築した。HEV 車に電動 過給機を組み合わせたハイブリッドエンジンシステ ムでは、エンジン低速トルクが改善し、従来 HEV 車に 比ベ少ないバッテリ搭載量でも走行可能であること が把握でき、本報で目的とした「システム成立性」が 確認できた。今後は、燃費改善効果を検証するため、 台上ハイブリッド試験装置を用い研究を進める。

参考文献

(1)(社)全日本トラック協会、ハイブリッド貨物自動 車の技術調査報告書(2004)
(2)石川直也他:機械式過給機を用いたディーゼル エンジンの過渡排出ガス低減に関する研究、自動車技 術会論文集、Vol. 41、No. 2、p. 347-352 (2010)
(3)茨木誠一他:電動アシストターボチャージャ"ハ イブリッドターボ"の開発、三菱重工技報、Vol. 43、 No. 3、p. 36-40 (2006)