④ PIXE を用いたディーゼル車から排出される微小粒子の組成分析

環境研究領域 ※後藤雄一、秋田県健康環境研究センター 斉藤勝美

1. はじめに

自動車から排出される粒子状物質 PM (Particulate Matter)は、人体に対する健康被害、特に発ガン性が 指摘されている.現在の PM 規制はフィルタ法による 排出 PM 総重量での規制であるが、最近の疫学調査に よる結果では PM の中でもナノ粒子と呼ばれる粒径 100nm 以下の微小粒子は、肺に吸着された後に細胞壁 を通過し他の臓器にまで到達、蓄積される危険性が指 摘されている⁽¹⁾.

自動車排出ガス規制の強化に伴うエンジンの新燃 焼技術の開発等により,排出される PM の排出量 (g/kWh)は低減されている.一方,現在,国連欧州経 済委員会自動車基準調和世界フォーラム UN-ECE/WP29 における PMP (Particle Measurement Program)活動 などディーゼル車から排出される粒子を低減し粒子 状物質を従来の重量基準だけでなく,個数等の新基準 による規制が進められている.

このような背景の中で、ディーゼル排出粒子の粒径 分布は、多くの研究者によって詳細に研究されてきた ⁽²⁾⁻⁽⁵⁾.そしてまた、粒子の排出挙動が種々の運転条件 において調査されてきた.アイドリング中や減速時に 微小粒子がディーゼル自動車から排出されることも 分かってきている.

ディーゼル車の排出粒子の粒径分布やアイドリン グや減速時に排出される等の挙動が多くの研究者に より詳細に調べられている.しかしながら,DPF 装着 ディーゼル車の排出微粒子の組成について十分には 調べられていない.そこで我々は微小粒子の元素分析 に着目し,微粒子の粒径毎の組成の PIXE (Particle Induced X-ray Emission) による解析を行った.種々 の運転条件における解析結果について述べる.

2. 試験装置と試験条件

2.1. PIXE とは

PIXE 分析は、図1の概念図のようにイオン(原子の 外を回っている電子を引き離して+の電荷を持つ)を 超高電圧かけて加速し、衝突した試料元素より発生す る特性X線(電磁波)を半導体検出器で検出して、コ ンピュータに取り込み構成元素を解析する分析方法 である.

PIXE 分析は,高い感度で分析でき,ごく微量の試料 により多くの元素分析が可能である上,大気中での分 析も可能であるという特徴を持つ.

2.2. 実験方法

最新のディーゼル自動車から排出される粒子状物 質をナノ粒子まで各ステージにサンプル可能な Nano-moudi-II 等を使用して,粒径ごとに捕集した. 各粒径ごとに OC (Organic Carbon), EC(Elemental Carbon),元素分析,イオン分析を行った.

Fig. 1 PIXE Analysis

供試エンジンA及び供試車両2台(B,C)を使用した.表1に示す供試エンジンは4Lの粒子とNOxを同時低減する最新の後処理装置(DPNR)を装着した新長期規制適合のエンジンである.エンジンベンチで粒子の分級捕集試験を行った.供試車両Bは表1のエンジンと同仕様で後処理装置にDPFを装着した4Lエンジンを搭載した新短期規制適合の車両である.供試車両Cは表2に示す後処理装置無しの9.2Lのエンジンを

Table 1 Engine specification of engine A and vehicle B

シリンダー配置	直列4気筒・ターボインタークーラー
使用燃料	低硫黄軽油(S 50ppm軽油)
燃料噴射装置	コモンレール式
排出ガス低減装置	クールEGR
浙山カへ民族表世	DPNR (Engine A), DPR (Vehicle B)
内径×行程(mm)	104×118
総排気量(cc)	1 009
	4,005
<u>上</u> 編比	18
<u> </u>	18 110kW (150PS) / 3,000rpm
<u> </u>	18 110kW (150PS) / 3,000rpm 392N·m (40.0kg·m) / 1,600rpm

Table 2 Engine specification of Test vehicle

総排気量	9.2L
気筒数	6
吸気冷却機の有無	無し
過給機の有無	無し
後処理装置	触媒無し
アイドル回転速度	550rpm

搭載した長期規制適合車両である.車両Bはアイドリング条件で捕集し,車両Cはシャシダイナモメータ(以下C/Dと記す)によるJE-05モード試験を実施した.

Nano-moudi-II の仕様を表3に示す.Nano-moudi は 表3に示すように10nmから10 μ mまでの範囲で分級 できる.使用した軽油はS分10ppm以下の軽油であり, 各エンジンの潤滑油は純正のものを使用した.

Table 3 Nano-moudi-II specification

		Stage No.	Size(nm)	
		1	10,000	
		2	5,600	
	Impactor	3	3,200	
Configuration	Impactor only	4	1,800	•
Flow Rate(at the inlet)	101 /min	5	1,000	
		6	560	
Pressure Drop (without filter)	90kPa(360 in wg)	7	320	
Size(D × H)	83 × 521mm	8	180	Sampling
Weight	4.7kg(10.3lb)	9	100	Stages
		10	56	Jangas
		11	32	
		12	18	
		13	10)

Nano-moudi 等で捕集した粒子の PIXE 分析は(社)日本アイソトープ協会仁科記念サイクロトロンセンター, 潤滑油の PIXE 分析は(独) 放射線医学総合研究所の気中 PIXE システムを用い, 3.9MeV ヘリウムイオンビーム照射で行った.

2.3. 試験条件

試験条件としては、アイドリング条件、アイドリン グ捕集後のDPFの再燃焼条件の2つで行った.アイド リング条件とDPFの再燃焼条件で行った試験配置図と 試験条件を図2に示す.図3にアイドリング条件と DPFの再燃焼条件時の測定装置と車両の配置状況を示 した写真を示す.

アイドリング条件でのNanoAerometerによる捕集で
 は排出ガス中の粒子数濃度(#/cc)の違いのため、DPF
 上流で1時間,下流で6時間捕集した.

潤滑油試験では、純正オイル(コスモ石油,ePROEXTAR, 10W/30 マルチグレード)の新油(黄金色)

Fig.2 Test setup in the idling condition

Fig.3 Pictures of instruments and test vehicle in the idling condition

と試験使用油(黒色)について実施した.使用油の走 行距離は767kmである.

3. 実験結果

3.1 Idling 条件と再燃焼条件⁶⁰

表4にNano-Moudi を用いて測定した DPF 前におけ る粒径別元素を示す. 広い粒径範囲において, Mg, Si, Ca, Fe, Ni, Zn が微小粒子として排出されているこ とが分かる.

表 5 に Nano-Moudi を用いて測定した DPF 後におけ る粒径別元素を示す. Mg, Si, Ca, Fe, Ni が排出さ れていることが分かる.

表6にNano-Moudiを用いて測定した再燃焼時のDPF 後における粒径別元素を示す.広い粒径範囲におい て、Mg, Si, Fe, Ni, Cu が排出されていることが分 かる.表4のDPF前に比べNiの排出濃度は高いこと からDPF内から排出された可能性がある.

表7にNanoAerometer により捕集したDPF 前後, 再 燃焼時の80nm, 15nm の粒子の元素を示す.Nano-Moudi の場合と同様の傾向を示している. 表4のDPF 前に比 べ表7のFeの排出濃度は高いことからDPF 内成分の 可能性がある.

15nmの微小粒子にはMgやSi等の高い濃度の金属元 素が観察され、DPFの再燃焼条件のような高温条件で はMg, Si, Feが増加している.これらの金属元素は, 担体,触媒等のDPF内に含まれると考えられる.高温 状態では金属元素を含む固体粒子として排出ガス中 に一部飛散し,その固体粒子は排出ガス中の炭化水素 がガス温度低下に伴い核凝縮する核になる可能性が ある.

図5に試験車両純正の未使用と試験後の潤滑油の気 中 PIXE 法による元素分析を示す. 3.9 MeV のヘリウム イオンビーム(2mm φ)をヘリウムガス雰囲気の大気

圧(約1気圧)チャンバー内で照射試料に照射して 得られた特性X線スペクトルである.

Table 4 Inorganic Compositions of Size-resolved DEP	(Before DPF) - Idling condition by Nano Moudi
Table Inorganic compositions of the size-resolved DEP (soure) by NanoMou	di-II (Sampling condition: Idling, Sampling date: 26 July 2006)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		NN1-5	NN1-6	NN1-7	NN1-8	NN1-9	NN1-10	NN1-11	NN1-12	NN1-13
1000 nm 560 nm 320 nm 180 nm 100 nm 56 nm 32 nm 18 nm 10 nm Stage No. 5 Stage No. 6 Stage No. 7 Stage No. 8 Stage No. 9 Stage No. 10 Stage No. 12 Stage No. 13 Stage No. 12 Stage No. 14 Stage No. 14 </td <td></td> <td>1800 nm -</td> <td>1000 nm -</td> <td>560 nm -</td> <td>320 nm -</td> <td>180 nm -</td> <td>100 nm -</td> <td>56 nm -</td> <td>32 nm -</td> <td>18 nm -</td>		1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
Stage No. 5 Stage No. 6 Stage No. 7 Stage No. 8 Stage No. 9 Stage No. 10 Stage No. 11 Stage No. 12 Stage No. 13 Stage No. 14		1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
Elemental composition (ng/m³) Mg 659 1620 758 1700 798 <loq< th=""> 1950 5170 5090 Si <loq< td=""> 1260 <loq< td=""> 416 642 1090 1020 1940 1760 S <loq< td=""> <loq< td=""> 416 642 1090 1020 1940 1760 S <loq< td=""> <loq< td=""> <loq< td=""> 818 <loq< td=""> 639 <loq< td=""> <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>		Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elemental con	nposition (ng/m	3)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg	659	1620	758	1700	798	<loq< td=""><td>1950</td><td>5170</td><td>5090</td></loq<>	1950	5170	5090
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si	<loq< td=""><td>1260</td><td><loq< td=""><td>416</td><td>642</td><td>1090</td><td>1020</td><td>1940</td><td>1760</td></loq<></td></loq<>	1260	<loq< td=""><td>416</td><td>642</td><td>1090</td><td>1020</td><td>1940</td><td>1760</td></loq<>	416	642	1090	1020	1940	1760
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	<loq< td=""><td><loq< td=""><td><loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	818	<loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	639	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl	338	1260	655	<loq< td=""><td><loq< td=""><td>384</td><td>1460</td><td>2180</td><td>1290</td></loq<></td></loq<>	<loq< td=""><td>384</td><td>1460</td><td>2180</td><td>1290</td></loq<>	384	1460	2180	1290
Ca 11.3 249 1510 2590 1400 824 307 26.6 227 Fe 1.53 17.7 15.5 2160 54.0 36.6 21.4 54.9 64.5 Ni 0.44 6.52 <loq< td=""> <loq< td=""> 2.48 1.55 <loq< td=""> 19.4 2.93 Cu <loq< td=""> <loq< td=""> 4.96 7.14 13.6 15.8 14.5 12.7 Zn 3.06 35.1 261 469 395 448 211 50.0 65.4 Pb 4.00 2.10 1.52 2.00 2.93 2.10 2.10 2.10 1.55 2.10 2.10 1.55 2.00 1.55 2.00 1.55 2.00 2.00 2.00 2.00 65.4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00</loq<></loq<></loq<></loq<></loq<>	К	<loq< td=""><td><loq< td=""><td>63.6</td><td>117</td><td>57.1</td><td>70.4</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>63.6</td><td>117</td><td>57.1</td><td>70.4</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	63.6	117	57.1	70.4	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Fe 1.53 17.7 15.5 2160 54.0 36.6 21.4 54.9 64.5 Ni 0.44 6.52 <loq< td=""> <loq< td=""> 2.48 1.55 <loq< td=""> 19.4 2.93 Cu <loq< td=""> <loq< td=""> 4.96 7.14 13.6 15.8 14.5 12.7 Zn 3.06 35.1 261 469 395 448 211 50.0 654 Pb <1.00</loq<></loq<></loq<></loq<></loq<>	Ca	11.3	249	1510	2590	1400	824	307	26.6	227
Ni 0.44 6.52 <loq< th=""> <loq< th=""> 2.48 1.55 <loq< th=""> 19.4 2.93 Cu <loq< th=""> <loq< th=""> <loq< th=""> 4.96 7.14 13.6 15.8 14.5 12.7 Zn 3.06 35.1 261 469 395 448 211 50.0 65.4 Pb 4.00 2.01 1.55 20.8 4.00 20.0 65.4</loq<></loq<></loq<></loq<></loq<></loq<>	Fe	1.53	17.7	15.5	2160	54.0	36.6	21.4	54.9	64.5
Cu <loq< th=""> <loq< th=""> 4.96 7.14 13.6 15.8 14.5 12.7 Zn 3.06 35.1 261 469 395 448 211 50.0 65.4 Pk 4.00 2.10 1.55 20.8 4.00 27.2</loq<></loq<>	Ni	0.44	6.52	<loq< td=""><td><loq< td=""><td>2.48</td><td>1.55</td><td><loq< td=""><td>19.4</td><td>2.93</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.48</td><td>1.55</td><td><loq< td=""><td>19.4</td><td>2.93</td></loq<></td></loq<>	2.48	1.55	<loq< td=""><td>19.4</td><td>2.93</td></loq<>	19.4	2.93
Zn 3.06 35.1 261 469 395 448 211 50.0 65.4	Cu	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<></td></loq<>	<loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<>	4.96	7.14	13.6	15.8	14.5	12.7
The diagonal state and d	Zn	3.06	35.1	261	469	395	448	211	50.0	65.4
	Pb	<loq< td=""><td>3.10</td><td>1.55</td><td>20.8</td><td><loq< td=""><td>38.8</td><td><loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<></td></loq<></td></loq<>	3.10	1.55	20.8	<loq< td=""><td>38.8</td><td><loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<></td></loq<>	38.8	<loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<>	<loq< td=""><td>27.3</td></loq<>	27.3
Ionic composition (µg/m ³)	Ionic composi	tion (µg/m ³)								
NO2 ⁻ 17.4 9.47 10.0 2.37 6.32 6.58 18.2 13.2 5.26	NO_2^-	17.4	9.47	10.0	2.37	6.32	6.58	18.2	13.2	5.26
NO3 8.42 6.05 6.58 3.42 4.74 5.26 12.4 8.42 5.00	NO ₃ ⁻	8.42	6.05	6.58	3.42	4.74	5.26	12.4	8.42	5.00
SO4 ²⁻ 0.26 0.53 1.32 0.79 0.79 1.58 0.79 1.05 0.79	SO_4^{2-}	0.26	0.53	1.32	0.79	0.79	1.58	0.79	1.05	0.79

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

Table 5 Inorganic Compositions of Size-resolved DEP (After DPF) - Idling condition by Nano Moudi

Table Inorganic compositions of the size-resolved DEP (after of DPR & catalyst) by NanoMoudi-II. (Sampling condition: Idling, Sampling date: 27 July 2006)

	NNA1-5	NNA1-6	NNA1-7	NNA1-8	NNA1-9	NNA1-10	NNA1-11	NNA1-12	NNA1-13
	1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
	1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
	Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
Elemental con	nposition (ng/m	3)							
Mg	268	267	7.70	175	296	<loq< td=""><td>280</td><td>826</td><td>584</td></loq<>	280	826	584
Si	<loq< td=""><td>48.1</td><td><loq< td=""><td>307</td><td>93.1</td><td><loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<></td></loq<></td></loq<>	48.1	<loq< td=""><td>307</td><td>93.1</td><td><loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<></td></loq<>	307	93.1	<loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<>	131	<loq< td=""><td>45.6</td></loq<>	45.6
s	<loq< td=""><td>160</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	160	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<>	<loq< td=""><td>157</td><td>249</td></loq<>	157	249
Cl	120	98.1	<loq< td=""><td><loq< td=""><td>98.2</td><td>148</td><td>90.9</td><td><loq< td=""><td>549</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>98.2</td><td>148</td><td>90.9</td><td><loq< td=""><td>549</td></loq<></td></loq<>	98.2	148	90.9	<loq< td=""><td>549</td></loq<>	549
K	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Ca	<loq< td=""><td><loq< td=""><td><loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<>	70.6	<loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<>	5.69	11.0	<loq< td=""><td>63.2</td></loq<>	63.2
Fe	0.51	51.8	3.52	3.98	3.57	4.55	0.54	96.6	15.0
Ni	0.15	<loq< td=""><td>0.16</td><td><loq< td=""><td>0.57</td><td>0.47</td><td><loq< td=""><td>1.75</td><td>0.49</td></loq<></td></loq<></td></loq<>	0.16	<loq< td=""><td>0.57</td><td>0.47</td><td><loq< td=""><td>1.75</td><td>0.49</td></loq<></td></loq<>	0.57	0.47	<loq< td=""><td>1.75</td><td>0.49</td></loq<>	1.75	0.49
Cu	0.47	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<>	2.02	<loq< td=""></loq<>
Zn	0.73	<loq< td=""><td><loq< td=""><td>1.24</td><td>1.60</td><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.24</td><td>1.60</td><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	1.24	1.60	1.09	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Pb	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	1.09	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<>	1.48	<loq< td=""></loq<>
Ionic compos	ition (µg/m ³)								
NO_2^-	1.00	1.80	4.47	1.40	0.96	2.63	0.66	1.14	0.96
NO ₃ ⁻	0.92	1.32	2.15	0.79	0.79	1.49	0.88	0.96	1.01
SO_4^{2-}	< 0.04	0.09	0.09	< 0.04	0.04	0.04	< 0.04	< 0.04	0.04

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

Table 6 Inorganic Compositions of Size-resolved DEP (After DPF, Regeneration) - Idling condition by Nano Moudi

Table Inorgani	c compositions	of the size-reso	lved DEP (teat	nent of DPR) b	y NanoMoudi-	II. (Sampling co	ondition: Idling,	Sampling date	27 July 2006)
	NNT1-5	NNT1-6	NNT1-7	NNT1-8	NNT1-9	NNT1-10	NNT1-11	NNT1-12	NNT1-13
	1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
	1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
	Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
Elemental con	nposition (ng/m	3)							
Mg	2350	1850	<loq< td=""><td><loq< td=""><td>1720</td><td>1640</td><td>619</td><td>9600</td><td>7410</td></loq<></td></loq<>	<loq< td=""><td>1720</td><td>1640</td><td>619</td><td>9600</td><td>7410</td></loq<>	1720	1640	619	9600	7410
Si	1450	174	2340	1260	552	459	<loq< td=""><td>1060</td><td>332</td></loq<>	1060	332
S	628	952	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cl	<loq< td=""><td><loq< td=""><td>1060</td><td><loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1060</td><td><loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	1060	<loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<>	1550	<loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<>	<loq< td=""><td>5700</td></loq<>	5700
K	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Ca	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Fe	142	<loq< td=""><td><loq< td=""><td>16.7</td><td>31.0</td><td>42.8</td><td>56.9</td><td>728</td><td>25.4</td></loq<></td></loq<>	<loq< td=""><td>16.7</td><td>31.0</td><td>42.8</td><td>56.9</td><td>728</td><td>25.4</td></loq<>	16.7	31.0	42.8	56.9	728	25.4
Ni	7.42	8.07	4.34	21.1	13.6	8.69	10.3	46.8	37.1
Cu	<loq< td=""><td><loq< td=""><td>8.69</td><td>11.2</td><td>6.83</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>8.69</td><td>11.2</td><td>6.83</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<></td></loq<>	8.69	11.2	6.83	<loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<>	<loq< td=""><td>37.1</td></loq<>	37.1
Zn	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<>	35.5	<loq< td=""></loq<>
Pb	<loq< td=""><td>2.48</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	2.48	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<>	20.5	38.7	<loq< td=""></loq<>
Ionic compos	ition (µg/m ³)								
NO_2^-	8.4	9.5	33.2	16.8	3.2	15.8	14.2	16.8	11.6
NO ₃ ⁻	12.1	12.6	21.6	15.8	11.0	13.2	16.3	11.0	13.2
SO4 ²⁻	<0.5	2.1	<0.5	2.1	<0.5	0.5	0.5	<0.5	<0.5

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

新油からは P, S, Ca, Zn が検出され,使用油から はこれらの元素に加えて Al, Si, K が検出された.こ れら元素のうち, P, S, Ca のピークは非常に大きい. 検出された元素濃度を 10mg/L の標準液によるピーク

面積から概算すると、PとSは300~500mg/L、Caは20~30mg/L,Znは数 mg/L,Al,Si,Kは0.05~0.1mg/Lと推定される.

エンジン潤滑油には,酸化防止剤,摩擦防止剤,清

		Af	ter				
	Be	fore		Regenerat	tio		
Sample No.	NN-80	NN-15	NNA-15	NNT-15			
Particles size	80 nm	15 nm	15 nm	15 nm			
Elemental compo	osition (ng/m ³)	1					
Mg	<loq< td=""><td><loq< td=""><td>15400</td><td>146000</td><td></td></loq<></td></loq<>	<loq< td=""><td>15400</td><td>146000</td><td></td></loq<>	15400	146000			
Si	42800	23700	<loq< td=""><td>162000</td><td></td></loq<>	162000			
S	<loq< td=""><td>32900</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	32900	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>			
Cl	59000	<loq< td=""><td>10200</td><td>89800</td><td></td></loq<>	10200	89800			
K	<loq< td=""><td>5790</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	5790	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>			
Ca	<loq< td=""><td>505</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	505	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>			
Fe	<loq< td=""><td>724</td><td>113</td><td>5490</td><td></td></loq<>	724	113	5490			
Ni	593	680	43.9	659			
Cu	<loq< td=""><td><loq< td=""><td><loq< td=""><td>615</td><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>615</td><td></td></loq<></td></loq<>	<loq< td=""><td>615</td><td></td></loq<>	615			
Zn	<loq< td=""><td><loq< td=""><td>65.9</td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>65.9</td><td><loq< td=""><td></td></loq<></td></loq<>	65.9	<loq< td=""><td></td></loq<>			
Pb	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>			
Ionic composition (µg/m ³)							
NO ₂ ⁻	6.1	22.3	2.0	76.9			
NO ₃ ⁻	14.2	32.4	4.0	93.1	_		

Table 7 Inorganic Compositions of Size-resolved DEP - Idling condition by NanoAero meter

NN-80 and NN-15 are source; NNA-15 is after DPR & Catalyst; NNT-15 is Treatment of DPR. LOQ is below limit of quantification.

Fig.5 PIXE analysis of lubricants

浄分散剤, 消泡剤などが添加されている.酸化防止
 剤として代表的なジアルキルジチオリン酸亜鉛
 (ZDTP)には P, S, Zn が, 清浄分散剤には Ca が,
 消泡剤には Si が含まれている.

エンジン潤滑油には,酸化防止剤,摩擦防止剤,清浄 分散剤,消泡剤などが添加されている.酸化防止剤と

ナノ粒子は、アイドリング条件、減速走行条件において特徴的に排出され、その化学的成分の多くは炭化水素からなる.減速走行時には通常燃料カットが行われるため、その際に排出されるナノ粒子は燃焼起源の粒子とは考えにくく、潤滑油起源と考えることが妥当である.炭化水素を主成分とするナノ粒子は、後処理装置の酸化触媒が活性状態にある時には酸化されるが、排出ガス温度が低く触媒が活性状態にない長時間のアイドリング条件や減速走行条件では後処理装置後にも一部がガス状態で通過した後に粒子となり排出される.また、排気系内面に付着した炭化水素が、

運転条件による排出ガス温度上昇に伴い蒸発し排気 系内で凝縮してナノ粒子となる可能性も考えられる が、その場合には検出された金属成分が粒子内に含ま れる理由が説明できない.以上のことから、潤滑油中 に含まれる添加剤の金属元素や DPF 内の金属元素が ナノ粒子に含まれると考えられる.

4. まとめ

- (1) DPF 装着ディーゼル車から排出される微小粒子の物理的・化学的特性を調べる中で、粒径分布、粒子濃度及び組成が重要であり、PIXE によりナノ粒子の組成分析を可能とした.
- (2) 微小粒子は、Nano-moudi sampler と NanoAerometer を用いて PIXE により分析可能な 量を捕集することが出来た.
- (3) 微小粒子における種々の元素 (Mg, Si, Ca, Zn, Fe, Ni, Cu) が、PIXE 解析により調べられ た.これらの元素の一部は、潤滑油に添加剤とし て用いられている.これらの元素の一部は、潤滑 油由来であると考えられる.
- (4) PIXE によって検出された金属元素は、微小粒 子の核になりうる可能性がある.これらの元素の 排出は DPF の再燃焼の際に増加した.

DPF後のPM量は非常に微量であるため,サンプル方法と微量ナノ粒子の影響度については,更なる検討が必要であり今後の課題である.本研究は,環境省委託調査として元研究所員の増永氏の協力の下に行われた.協力して頂いた各位に感謝したい。

参考文献

(1)M. Krzyzanowski (WHO), Health risks of particulate matter air pollution, an overview for the 41st session of GRPE

(2) Yuichi GOTO, Terunao KAWAI, ETH 2003

(3) Yuichi GOTO, Terunao KAWAI, SAE paper No.2004-01-1984

(4)Rahman M. Montajir, et.al., SAE paper No. 2005-01-0187

(5) Qiang Wei et.al., Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission,SAE paper No. 2006-01-0865

(6) Yuichi GOTO, Katsumi Saitoh, ETH, 2007