# 都市鉄道における急曲線通過性能向上の取り組み

- ボギー角アクティブ操舵台車の研究開発 -

| 大野 寛之 | 松本 陽                                      | 佐藤 安弘                                          |
|-------|-------------------------------------------|------------------------------------------------|
| 頁田 義大 |                                           |                                                |
| 道辻 洋平 |                                           |                                                |
| 谷本 益久 |                                           |                                                |
| 左藤 與志 |                                           |                                                |
|       | 大野 寛之<br>頁田 義大<br>首辻 洋平<br>首本 益久<br>左藤 與志 | 大野 寛之 松本 陽<br>頁田 義大<br>首辻 洋平<br>子本 益久<br>左藤 與志 |

#### 1.はじめに

急曲線が多数存在する都市鉄道においては、脱線事 故やレール・車輪の異常摩耗を防止するなど、安全性、 保守性の向上が重要な課題である。鉄道車両の台車に おいて、直進安定性と曲線通過性能は一般的に相反す る関係にあり、これまでは高速走行時の直進安定性の 確保を、急曲線通過性能よりも優先する傾向がみられ る。しかしながら、地下鉄のような多数の急曲線があ る路線では曲線通過性能を向上させることにより、安 全上・保守上のメリットがあるものと考えられる。筆 者らは曲線通過性能の向上を目的として、台車自体を 車体に対してアクティブに操舵(ボギー)する台車シ ステムの提案<sup>(1)(2)</sup>を行ってきた。前報<sup>(1)(2)</sup>では台上試験 による定常曲線走行時において、本方式の基本的特性 を把握し、有効性が確認されたことを述べた。本報告 では、操舵用アクチュエータの摩擦などを考慮した制 御性能の向上、さらに1台車単位での制御を2台車 (=1車両)に拡張し、車両の前後台車を総合的に考 慮して曲線通過時の安全性を向上させる方法につい て報告する。

# 2.ボギー角アクティブ操舵台車2.1.ボギー角アクティブ操舵台車の概要

ここで提案する「ボギー角アクティブ操舵台車 (Active Bogie-Steering Truck:ABS台車)」は、車 体/台車間にアクチュエータを装備して、曲線に応じ て台車そのものをアクティブに操舵しようとするも のである(Fig.1)。輪軸の操舵リンク等は用いず、従 来のヨーダンパ位置にアクチュエータを付加すると いう簡単な構造で曲線通過性能の向上をはかること ができる。



Fig.1 Mechanism of Active-Bogie-Steering truck

# 2.2.操舵アクチュエータ

Fig.2 に今回使用した半車体台上実験装置と、ヨー ダンパ取り付け位置に取り付けられた操舵アクチュ エータを示す。操舵アクチュエータは1台車に対して 左右2箇所点対象となるように取り付けられている。 アクチュエータの発生力は片側最大 20kN 程度であ る。



Fig 2 Test truck and steering actuator

## 3.新しい制御方式の検討

# 3.1.検討課題

これまでの研究では、定常曲線走行中に前軸外軌横 圧の値を0とできることは確認していたが、緩和曲線 中の曲率の変化状況に応じた適切な制御手法につい ては課題となっていた。そのため、緩和曲線中におい ても著大な横圧が発生しないよう、曲率の変化に応じ て操舵用のアクチュエータ力Fを制御するため、以下 の式に示す新たな手法を開発することとした。

$$\mathbf{F} = k(R\mathbf{c}) \cdot \boldsymbol{\rho} \tag{1}$$

ここで R c は定常曲線半径、 k は定常曲線半径に応じて変化するゲイン、 は走行中の軌道の曲率である。

3.2.アクチュエータの特性

#### 3.2.1.アクチュエータの動特性

操舵アクチュエータは、電圧指令値に比例したトル クを発生するACサーボモータの回転運動を直動シリ ンダ変位に変換する機構のため摩擦や内部慣性の影 響を受ける。そのような要素のモデル化をおこなうに あたり以下の式を仮定する。

 $m\ddot{x} + f_c \cdot \operatorname{sgn}\left(\dot{x}\right) = k_c \cdot v_c \tag{2}$ 

x:アクチュエータ直動変位

*m*:内部慣性質量

fc:乾性摩擦力

kc:指令電圧から発生力の校正係数

である。

台車の曲線通過を想定した場合、曲率が大きくなる につれボギー角は増加する。同時にアクチュエータ変 位と発生力は増大関係になる。このことを考慮し動作 遅れに支配的な乾性摩擦を補償する指令電圧として 以下の式を示す。

 $v_c = 1/k_c \{L_d + f_c \cdot \text{sgn}(\dot{L}_d) + k_P(L_d - L)\}$  (3) ここでは目標として発生するアクチュエータ発生 力である。または目標発生力と実発生力の偏差に対す るフィードバック係数であり実験により適当な値を 見出すことができる。

#### 3.2.2.アクチュエータ単体の応答特性

Fig.3 は、アクチュエータ単体の両端をジグで拘束 した状態で、目標発生荷重Ldに対する制御系ごとの 追従特性を比較したものである。アクチュエータ端点 にはロードセルが設置されており、発生力Lを観測で きる。図示されるように式(3)の右辺第一項のみの制御 では、目標値に対し追従が遅れ、定常状態における偏 差が確認できる。この偏差は±1.5kN 程度の幅で乾性 摩擦が存在することに起因するものである。過渡的な 目標値に対する追従の遅れは、同式の第2項の摩擦補 償を付加することで改善している。さらに第3項のフ ィードバックを付加することにより、目標値に良好に 追従する制御系となっていることが確認できる。



3.2.3.台車取付け時の応答

アクチュエータを実際に台車に取り付け、アクチュ エータ目標発生力と実際の発生力の特性評価を台上 走行実験によって検証した。

Fig.4、Fig.5 は軌条輪走行状態におけるアクチュエ ータ目標発生力と実際の発生力を表したものである。 図示されるように目標発生力に対し遅れと定常偏差 が生じている様子がわかる。一方、Fig.5 に示す式(2) に基づくフィードバックを導入することで目標値に よく一致した発生力となっている。





Fig.5 Control with feedback (R=180m, V=25km/h)

#### 4.新制御方式による走行試験結果

新しい制御方式による操舵台車の曲線通過性能を 検証するため、1台車・半車体モデルにて、台車試験 設備を用いた走行試験を行うとともに、マルチボディ ダイナミクスシミュレーションソフト"A'GEM"に よるシミュレーションを行った。

Fig.6 に曲線半径と前軸外軌側横圧との関係を、操 舵制御なし、ありの場合をまとめて示す。シミュレー ション結果と台上試験の結果とは良く一致しており、 操舵制御を行うことにより、いずれの曲線半径におい ても前軸外軌側横圧をほぼ0とすることに成功して いる。特に、制御がなければ著大な外軌横圧が生じる 急曲線においても、制御によりこれをほぼ0に押さえ られていることから、急曲線での曲線通過性能が大幅 に向上していることが分かる。



Fig.6 Lateral contact force of front-outside wheel

Fig.7 には曲線通過時に要求されるアクチュエータ 力を示す。これについてもシミュレーション結果と台 上試験の結果は良く一致しており、シミュレーション の有効性を物語っている。グラフから、定常曲線の曲 線半径が小さくなるに従い、前軸外軌横圧を0にする ために要求されるアクチュエータ力が増大していく 様子を読み取ることができる。



Fig.7 Comparison of required actuator force

#### 5.1車両モデルの検討

#### 5.1.検討課題

交通安全環境研究所の備える台車試験設備は、曲線 通過状況を作り出すことができる我が国唯一の試験 設備であるが、1台車半車体モデルの走行試験しか実 施することができない。操舵台車の実用化に当たって は、1車両全体で曲線通過性能の向上を検証すること が必要であるが、設備の制約によりこれができないた め、シミュレーションによる検討を行った。

前節でも紹介したとおり、マルチボディダイナミク スシミュレーションソフト "A'GEM"を用いたシミ ュレーション結果は台上試験結果と良く一致してお り、シミュレーションモデルを1車両モデルに拡張す ることも可能である。

Fig.8 に制御方式も含めたシミュレーションの概念 図を示す。



Fig.8 Multibody simulation diagram

1車両モデルでは前後それぞれの台車についてア クチュエータ力を制御する必要がある。前後それぞれ の台車の操舵モーメント j(添字 j=f,r は、それぞれ 前,後台車を表す)は以下の式で表される。

$$j = 2l_{\text{ba}} \cdot k_j(Rc) \cdot \rho_j(t)$$
(5)

ここで $l_{ba}$ は台車中心からのアクチュエータ取り付け位置までの左右距離, $k_j$ は定常曲線半径に応じて変化するゲインである。

1車両モデルでの曲線通過性能の評価を行うにあ たり、車両モデルの曲線通過性能の良否を表す評価関 数を考える必要がある。そこで曲線通過性能を考える 上で、これまでの台上試験同様に各台車の先頭軸外軌 車輪の定常曲線中の平均横圧を評価指標として使用 することとした。

先頭軸外軌車輪の横圧 Q の低減を目標とした評価

関数 J<sub>R</sub>を次式で定義する。

$$J_{R} = \frac{1}{2} \left( \overline{Q}_{ir}(Rc) + |\overline{Q}_{3r}(Rc)| \right)$$

$$\overline{3} r i = 1 \sim 4; = mag = 3$$

$$(4)$$

添字 k=l,r :左右輪

この評価関数を最小化するゲインk<sub>j</sub>(Rc)により、車 両通過時の先頭軸外軌横圧が抑えられ,走行安全性の 向上とフランジ反力の低減を期待できる

#### 5.2.解析結果

各曲線半径に対して評価関数を最小化する最適な ゲインを数値解析により算出する。曲線条件 =180,200,250,300,350,400m それぞれで前・後台車の 制御による操舵モーメントを変化させ、評価関数が最 小となる前後モーメント配分が見つかり、各曲線半径 において最適なゲインが求まる。線形近似補間をして 求まったゲインを Fig.9 に示す。図示されるとおり、 急曲線になるほど前後台車ともゲインが大きくなる 傾向がある。また、前台車のゲインは後台車より大き く、ゲインの符号が等しいことから車体に対して台車 ヨー角が同相となる操舵制御がよいことがわかる。



100 200 300 400 500 600 Running distance [m]

0

n

Fig.10 Running response for outside wheel

数値解析により探索した以外の曲線条件の例とし て半径 220m の曲線における制御効果を示す。Fig.9 により補間された前・後制御ゲインの値である 3300, 2290kN·m によって制御を行うと, Fig.10(a)に示す ように曲線通過中の1軸および3軸の外軌横圧は零付 近まで減少している。これはFig.10(b)に示すように、 1軸と3軸の外軌側車輪のフランジ反力が半減した効 果が大きい。また,評価関数 J220の探索結果によると、 最適値、補間値、非制御値はそれぞれ 0.0324、0.551、 18.2 となり、補間値でも最適値と同等の制御効果が得 られている。以上のことから、提案する操舵力配分制 御により曲線通過性能が向上していることが確認で きる。

#### 6.おわりに

本報告ではボギー角アクティブ操舵台車の制御に ついて以下のことを明らかにした。

1)アクチュエータの制御

アクチュエータの摩擦特性を考慮したフィード バック制御により、緩和曲線においても適切な操 舵力を得ることができるようになった。

2)曲線通過性能の向上

適切な操舵力を与えることにより、いずれの曲線 半径においても前軸外軌車輪の横圧をほぼ0にす ることが可能になった。

#### 3)1車体モデルの検証

1車体モデルについて新しい評価関数を導入し て前後台車の最適操舵ゲインの検討を行った。そ の結果、前後の台車に適切な操舵力の配分を行う ことで、車両全体の曲線通過性能が顕著に向上す ることが明らかとなった。

今後はこれらの結果を基に実車走行による検証を 行うことが課題である。

本研究の実施にあたり(財)メトロ文化財団の公益 基金による研究費補助を頂いたことに謝意を表する。

### 参考文献

- (1)松本陽 他、「ボギー角をアクティブに操舵する急 曲線向け台車の研究開発(第1報)」、第二回交通安 全環境研究所研究発表会講演概要、2002
- (2)松本陽 他、「ボギー角をアクティブに操舵する急 曲線向け台車の研究開発(第2報)」、第二回交通安 全環境研究所研究発表会講演概要、2003