バイオマス燃料対応ディーゼルエンジンの研究開発(第2報)

- 高 EGR 率と強酸化触媒の適用による排出ガス特性の改善-

環境研究領域	川野 大輔	石井 素	後藤 雄一	野田 明
(株)新エィシーイー	青柳 友三			

1. まえがき

バイオマス燃料は「カーボンニュートラル」の性質 を有するため, CO₂ 排出抑制の効果が期待されてお り,その一種であるバイオディーゼル燃料(BDF)の 利用は,有効なCO₂排出抑制の手段の一つと考えられ る.したがって,BDFの利用により地球温暖化防止を 効率的に進めるためには,100%(ニート)あるいは それに準ずる高い濃度で利用することが望ましい.

一方,排出ガスに関しては,新長期規制が2005年 10月から実施されることに加えて,2009年に実施予 定のポスト新長期規制¹⁾についても答申が出され,バ イオマス燃料を使用した場合においても,より一層の 排出ガス改善が求められる.

これらの背景から本事業では,既存のディーゼル機 関を BDF 専用の機関に改良し, BDF 普及のための技 術指針を明確にすることを目的としている.前報²⁾で は,未改造の既存機関に BDF を適用し,軽油に比べ て排出ガス特性が悪化する結果を得た.本報ではその 悪化を改善すべく,高 EGR 率化と強酸化触媒により 排出ガス性能の向上を試みた結果について報告する.

2. 実験装置および実験方法

本実験で用いたエンジンシステムの概略図,および 諸元を図1,表1に示す.ベースエンジンは直列4気 筒インタークーラーターボディーゼルエンジンであ る.排出ガス低減技術としてクールド EGR,可変ノ ズルターボや,NOx 吸蔵還元触媒(NSR)とディーゼ ルパティキュレートフィルタ(DPF)双方の機能を持 つ DPNR (Diesel Particulate-NOx Reduction)システム ³⁾を搭載しているため,新長期規制値レベルの排出ガ ス性能を達成している.前報で,BDF 使用時に NSR で用いるリッチスパイクに起因してPMが増加する傾 向が見られたため,エンジンに装着されている酸化触 媒に代わり,白金担持量を従来の2倍にした強酸化触 媒を取り付けた.

触媒前後の排出ガス(CO, CO₂, O₂, THC, NOx)の測 定には,排出ガス測定装置(HORIBA: MEXA 7100EGR)を用いた.PMについては,後処理装置か らの排出ガスを分流希釈トンネルで希釈した後,テフ ロンフィルタにて捕集した.

Fig. 1 Schematic diagram of engine system

Model	N04C-TA		
Туре	4-cylinder Intercooler-turbo diesel engine		
Fuel	Low S (S<10ppm)		
Injection system	Common-rail		
Devices	Cooled EGR, DPNR		
Bore x stroke	104 x 118mm		
Displacement	4,009cc		
Compression ratio	18.0		
Max. power	110kW (150PS) / 3,000rpm		
Max. torque	392Nm (40.0kgm) / 1,600rpm		

Table 1 Specification of test engine

Properties			Light oil	RME
Density (15deg.C)	[g/cm ³]		0.8217	0.8839
Kinematic viscosity (40deg.C)	[mm²/s]		3.355 (30deg.C)	4.422
Flash point	[deg.C]		64.0	172.5
Cetane number	[-]		58.3	53.1
Distillation point	[deg.C]	IBP	165.0	337.5
		10%	204.5	353.3
		50%	282.5	359.3
		90%	332.5	363.9
		EP	353.0	414.8
СНО	[wt.%]	С	86.1	77.1
		н	13.8	12.0
		0	<0.1	10.4
Low heating value	[kJ/kg]		43,092	36,800
Sulfur content	[ppm]		3.0	<3.0

Table 2 Fuel properties

3. 供試燃料

本研究では,欧州の BDF 性状規格(EN14214)に 適合した菜種油メチルエステル(Rapeseed oil Methyl Ester, RME)を使用した.RME と軽油の燃料性状を比 較したものを表2に示す.RME は密度,動粘度,蒸 留点ともに軽油と比べて高く,燃料の微粒化・蒸発特 性の悪化が懸念される.しかし,RME は10.4 wt.%の 酸素が含まれる含酸素燃料であり,すすの排出を大幅 に低減できる可能性を有する.

4. 実験結果および考察

4.1. JE05 モードの定常モード化

本事業では,排出ガス測定のための走行モードとし て JE05 モードを採用するため,過渡走行に対応し得 るエンジン制御を行う必要がある.しかし,JE05 モー ド等の過渡走行モードでも,前提としてその運転範囲 内における定常運転時の排出ガスを低減させること が重要であることから⁴⁾本報では初段階として,JE05 モードの運転範囲内での定常試験による排出ガス性 能の向上を進めた.

図2に供試エンジンが搭載されている車両諸元を考 慮して JE05 モードを実走行した際の回転数・トルク

Fig. 2 Operation point for JE05 mode test

Fig. 3 Emission results in JE05 mode test

履歴を示す.また,JE05 モードの運転範囲内の25 点 を定常試験のモード点とし,加えて各定常モード点付 近のエンジン状態の使用頻度を考慮して,各定常モー ド点の重み係数を決定した.これにより,定常試験の 結果からJE05 モードにおける排出ガス各成分の排出 量を概算することを試みた.

上記の手法の妥当性を検証するため,エンジンに改 良を施していない状態で,JE05 モードを実運転した場 合と,定常試験の結果から算出した各成分の排出量を 比較した.その結果を図3に示す.各成分ともに両者 の結果に大きな相違はなく,定常試験の結果から,実 際のJE05 モードにおける排出量を概算できるものと 考えられる.ただし,特に触媒後における排出ガス特 性は,実際には定常と過渡状態で大きく異なるため, 本手法は機関改良後の定常試験から,研究開発の方向 性の指標を得る目的のみで取り扱うものである.

4.2. 高 EGR 率による NOx の低減

前報において,BDF使用時にはすべての負荷域にお いて軽油よりも NOx 排出量が増加することを確認し た.これを低減するには高 EGR 率化が有効な手段で あるが,逆にすすの排出量が増加する懸念がある.し かし,含酸素燃料である BDF を使用すると,軽油に 比べて粒子数濃度が大幅に低減され,すすの生成が抑 制されていることも前報において確認されている.こ れは,EGR 率を高めてもすすの生成は抑えられるこ とを意味し,高EGR 率化はBDF使用時のNOx抑制 手段として極めて有効である可能性を示している.

本事業では、NOx 排出量に関してポスト新長期規制 の 0.7 g/kWh を目指しているが、そのためには、図 3 からわかるように、BDF 使用時にはオリジナルの状態 から NOx 排出量を半減させる必要がある、そこで、 今回はエンジンアウトの NOx 濃度を半減させること を目標として、EGR 率を増加させることとした、そ の際の一例として、1400 rpm における EGR 率による NOx 濃度の変化を図4 に示す、この手法を上記で示し たすべての定常モード点で行い、図5 に示すように各 定常モード点における EGR 率を決定した、

1400 rpm で EGR 率の変更前後における,全ての触 媒を通過後の排出ガス特性を図 6 に示す.EGR 率を 高めることにより,CO,HC 排出量が若干減少してい る.EGR 率の増加により排気温度が上昇し,強酸化 触媒がより活性化されるためであると考えられる.ま た,エンジンアウトで NOx 濃度を半減させるように EGR 率を調整したが,触媒後において負荷の比較的

Fig. 4 Effect of EGR rate on NOx emission (1400 rpm)

Fig. 5 EGR rate in all steady-state operation points

高い領域では NOx が 50 %以上低減している .これは, 上記の排気温度の上昇により,強酸化触媒のみならず NSR の触媒機能も活性化されたためと考えられる.

図7に, EGR 変更前後でJE05 モードにおける各成 分の排出量の概算値を比較した結果を示す.1400 rpm における結果と同様に,CO,HC 排出量は若干低減し, NOx 排出量に関しては50%以上低減し,ポスト新長 期規制 0.7 g/kWh を下回る排出量を達成した.前報に おいて,BDFの燃料性状に起因してリッチスパイクが 機能せず,NSRのNOx浄化率が著しく低下する結果 を得ていることから,リッチスパイクの噴霧特性を改 善することにより,更なる NOx 排出量の低減が期待 できる.また,EGR 率の増加により吸気酸素濃度が 減少するため,着火時期が遅延化することにより燃費 が大幅に悪化することが懸念されるが,本実験結果で は約3%の悪化に留まっている.

NOx 排出量に関しては大幅な低減が達成されたが,

Fig. 6 Emission results after catalyst (1400 rpm)

Fig. 7 Effect of EGR rate on emission results in JE05 steady-state mode test

Fig. 8 Effect of EGR rate on PM emission

一般に BDF は含酸素割合が 10 %程度であるため, EGR 率を高くし続けると,いずれすすの排出が急激 に増加する可能性がある.したがって,これによる急 激な PM 排出量増加の有無を確認するため,1400 rpm の低,中,高負荷(BMEP:0.26,0.51,0.76 MPa)にお いて PM の重量測定を行った.その結果を図8に示す. 各負荷域で NOx を半減し得る EGR 率に増加させても PM は増加せず,むしろ EGR 率増加後の方が低くなっ ている.これは,排気温度上昇に伴って強酸化触媒が より活性化し,SOF 分が低減されたこと,EGR 率の 増加による排出ガス流量の低減,さらにはすす粒子の 大粒径化⁵⁵により DPF で捕集され易くなった効果に よる結果と考えられる.

5. 今後の研究開発方針

(1) マップ制御による JE05 モード試験

今回行った定常試験をもとに, EGR バルブ開度, 更には EGR の変化に対応する吸気スロットル開度, および VGT 開度のマップを作成する.これらのマッ プ制御により JE05 モードの実走行試験を行う. (2) ロープレッシャーループ(LPL) EGR の採用

過給器のタービンから排出された排気ガスを,コン プレッサー前に還流させる本方法は,他の吸気制御へ の影響を最小限に抑えつつ,容易に多量の EGR を燃 焼室内に還流させることが可能である.この方法と従 来の EGR との組み合わせることにより,より最適な EGR 率制御を行う.

(3) リッチスパイクの最適化

前報で,BDFの不揮発性に起因してリッチスパイク の混合気形成が進まず,NSR がうまく機能しないこと がわかっている.したがって,リッチスパイク噴射シ ステムを改良し,NSRのNOx浄化率を向上させる. (4) 車両への適用 上記のように改良したエンジンシステムを実車に 搭載し,シャシダイナモにおいて JE05 モード試験を 行い,排出ガス性能向上の達成状況を確認する.

6. まとめ

高 EGR 率化と強酸化触媒により排出ガス性能の向 上を試みた結果,以下の結論が得られた.

- (1) JE05 モード運転範囲内の定常試験による排出ガ ス測定結果から, JE05 モード実走行による排出量 を概算することが可能である.
- (2) EGR 率を増加することにより, JE05 モードにお ける NOx 排出量は ポスト新長期規制値以下を達 成する可能性を有する.
- (3) BDF 使用時には 軽油使用時に想定される高 EGR 率時での PM 排出量の増加がなく, DPF や強酸化 触媒の機能向上により PM 排出量は減少する.
- (4) 高 EGR 率化と強酸化触媒を用いることにより、
 BDF 使用時には PM と NOx 排出量のトレードオフが回避され,排出ガス性能の向上が図られる.

謝辞

本研究は,国土交通省受託「バイオマス燃料対応自動車開発促進事業」の一環として行われた.エンジン 試験の際には,当研究所増永勝幸氏にご尽力いただいた.さらに本実験に使用した実験装置に関して,日 野自動車(株)の諸氏の多大なるご協力があったことをここに記し,謝意を表する.

参考文献

- 1) 環境省 中央環境審議会:今後の自動車排出ガス 低減対策のあり方について(第八次答申),(2005).
- 2) 川野 大輔ほか:バイオマス燃料対応ディーゼル エンジンの研究開発(第1報),交通安全環境研 究所研究発表会 講演概要, pp.1-6, (2005).
- Nakatani, K. et al. : Simultaneous PM and NOx Reduction System for Diesel Engines, SAE Paper 2002-01-0957, (2002).
- 4) 鈴木 央ーほか:新短期規制適合ディーゼル車に おける実走行モード排出ガス挙動の解析,自動車 技術会 春季学術講演会前刷集, No.33-06, (2006).
- Zhu, J. et al. : Effects of Exhaust Gas Recirculation on Particulate Morphology for a Light-Duty Diesel Engine, SAE Paper 2005-01-0195, (2005).