バイオマス燃料対応ディーゼルエンジンの研究開発(第1報)

- バイオマス燃料が既存のディーゼル機関の排出ガス特性に与える影響 -

環境研究領域	川野 大輔	石井 素	後藤 雄一	野田 明
(株)新エィシーイー	青柳 友三			

1. まえがき

2005年2月に発効した「京都議定書」により,日本 に対しては,2008~2012年までにCO2を代表とする 温室効果ガスの排出量を,1990年比で6%削減する 目標が設定されることとなった.しかしながら,日本 のCO2排出量は年々増加の一途を辿っており,中でも 運輸部門におけるCO2排出の増加率が大きいものの 一つであることから,自動車から排出されるCO2低減 が重要な課題となっている.

バイオマス燃料は「カーボンニュートラル」の性質 を有するため, CO₂ 排出抑制の効果が期待されてお り,そのディーゼル機関への適用は CO₂ 排出の抑制手 段の一つと考えられている.また,バイオマス燃料の 利用により地球温暖化防止を効率的に進めるための 方法としては,100%(ニート)あるいはそれに準ず る高い濃度で利用することが挙げられる.

一方,排出ガスに関しては,新長期規制が2005年 10月から実施されることに加えて,2009年に実施予 定のポスト新長期規制¹⁾についても答申が出され,バ イオマス燃料を使用した場合においても,より一層の 排出ガス改善が求められることとなる.

これらの背景から本研究では,既存のディーゼル機 関を低公害のバイオディーゼルに改良し,バイオマス 燃料普及のための技術指針を明確にすることを目的 としている.本報では,既存のディーゼル機関にバイ オマス燃料を適用し,燃焼・排出ガス特性の相違点を 従来の軽油と比較することにより,今後既存のエンジ ンシステムを改良するための方向性を明らかにした.

2. 実験装置および実験方法

本研究では,低公害のバイオディーゼルを開発する ため,現行で最も排出ガス特性が優れたエンジンシス テムをベース機関として採用した.本実験で用いたエ ンジンシステムの概略図,および諸元を表1,図1に 示す .供試エンジンは直列4気筒インタークーラター ボディーゼルエンジンである .排出ガス低減技術とし てクールド EGR や可変ノズルターボを有し,加えて DPNR (Diesel Particulate-NOx Reduction)システム²⁾ を搭載しているため,新長期規制値レベルの排出ガス を達成している.

エンジンアウトおよび触媒後の排出ガス (CO, CO₂, O₂, THC, NOx)の測定には,排出ガス測定装置

Table. 1 Specifications of test engine

Туре	4-cylinder Intercooler-turbo diesel engine
Fuel	Low S (S<10ppm)
Injection system	Common-rail
Devices	Cooled EGR, DPNR
Bore x stroke	104 x 118mm
Displacement	4,009cc
Compression ratio	18.0
Max. power	110kW (150PS) / 3,000rpm
Max. torque	392Nm (40.0kgm) / 1,600rpm

Fig. 1 Schematic diagram of engine system²⁾

Table. 2 Fuel p	properties
-----------------	------------

Properties			Diesel fuel	RME
Density (15deg.C)	[g/cm ³]		0.8217	0.8835
Kinematic viscosity (40deg.C)	[mm²/s]		3.355 (30deg.C)	4.310
Flash point	[deg.C]		64.0	174.0
Cetane number	[-]		58.3	52.8
Distillation point	[deg.C]	IBP	165.0	336.5
		10%	204.5	339.5
		50%	282.5	341.5
		90%	332.5	345.0
		EP	353.0	408.0
		С	86.1	77.0
СНО	[wt.%]	н	13.8	12.0
		0	<0.1	10.2
Low heating value	[kJ/kg]		43,092	36,980
Pour point	[deg.C]		-27.5	-10.0
Cloud point	[deg.C]		-5.0	-5.0
CFPP	[deg.C]		-9.0	-5.0
Sulfur content	[ppm]		3.0	2.0

(HORIBA: MEXA 7100EGR)を用いた.PM について は、後処理装置からの排出ガスを部分希釈トンネルで 希釈した後、テフロンフィルタにて捕集した.また、 エンジンアウトにおける PM 排出特性を把握するた め、排気ガスを触媒前から直接サンプリングし、希釈 装置にて 64 倍で希釈した後、EEPS(Engine Exhaust Particle Sizer, TSI: Model 3090)を用いて PM の粒径分 布を測定した.さらに定常運転の際には筒内圧とノズ ル針弁リフトのデータを採取し、100 サイクル平均の 筒内圧データから熱発生率を算出した.

3. 実験条件

世界中で様々なバイオマス燃料が使用されている が,本研究では欧州のバイオディーゼル燃料の性状規 格(EN14214)に適合した菜種油メチルエステル (Rapeseed oil Methyl Ester, RME)を使用した.RMEと 軽油の燃料性状を比較したものを表2に示す.RME は密度,動粘度,蒸留点ともに軽油と比べて高く,燃 料の微粒化・蒸発特性の悪化が懸念される.しかし, RME は約10 wt.%の酸素が含まれる含酸素燃料であ

Fig. 2 Cylinder pressure and heat release rate (Engine speed : 1600 rpm, BMEP : 0.64 MPa)

り,すすの排出を大幅に低減できる可能性を有する. なお,本実験を行った範囲では,バイオマス燃料使用時に生じる,燃料噴射系等の不具合³⁾は生じなかったことを追記しておく.

排出ガス測定の際は,1200~3200 rpm の定常運転に 加え,JE05 モードによる過渡運転の試験も行った. JE05 モード試験では変速ポイントを専用の変換アル ゴリズムで計算する必要があるが,その際に必要な車 両諸元データとして,供試エンジンが搭載されている 車両のデータを用いた.

4. 実験結果および考察

4.1. 定常試験

1600 rpm における筒内圧,熱発生履歴,およびノズ ル針弁リフトを図2に示す.負荷を変化させてもほぼ 同様の傾向であったため,本図では代表例として BMEP 0.64 MPa の場合のみを示している.針弁リフト の結果から,両燃料ともに上死点前18度にパイロッ ト噴射,続いて上死点でメイン噴射が行われている が 軽油よりも RME の方で開弁時間が増加している. これは,RME の単位体積あたりの発熱量が軽油と比 べて約8%低く,RME使用時に軽油と同じ BMEPを 得るには,その分軽油以上の燃料噴射量を必要とする ためである.また,他の研究において,RME は軽油 に比べて体積弾性率が高いため,ジャーク式燃料噴射 ポンプを用いた場合には噴射時期が進角する⁴⁾ことが 報告されているが,本エンジンはコモンレール式噴射 システムを採用しているため,本実験でその現象は見

Fig. 3 Exhaust emissions before and after catalyst (Engine speed : 1600 rpm)

られなかった.着火遅れは両者で相違はないが,1段 目と2段目ともに RME の方が軽油と比べて熱発生率 のピーク値が高く,拡散燃焼時の燃え切りは RME の 方が早くなっている.これらの熱発生の傾向は,軽油 に比べて RME の燃焼率が高いことを示している.

1600 rpmにおける触媒前後の排出ガス特性を図3に 示す.また,図3のデータから求めた触媒による各成 分の浄化率を図4に示す.触媒前のNOx 排出量は, 軽油よりも RME の方で高くなっている.この傾向は, 他のバイオディーゼルに関する研究 5-6においても報 告されているが、その詳細な原因に関しては未だ明ら かになっていない.本実験で得た熱発生履歴から判断 すると,燃料噴射量の多い RME では,筒内温度の高 温保持時間が増加し、それに伴い NOx の生成が活性 化することが考えられるが,詳細に関しては再度検討 する予定である.図4でもわかるように, RMEの場 合では触媒による NOx 浄化率は, BMEP 0.5 MPa 以上 で 50 %未満とかなり低く,その結果高負荷側では触 媒後の NOx 排出量は軽油と比べて極端に増加する. 上述のように RME は含酸素燃料であるため, 軽油で 適合されているリッチスパイク量では噴射量が不足 していることが考えられる.また,図4の排気温度の データ中に各燃料の蒸留範囲を追記した.軽油の場合 は低負荷であっても蒸発が可能であるが, RME が排

Fig. 5 Particle size distribution before catalyst (Engine speed : 1600 rpm, BMEP : 0.64 MPa)

気管中で蒸発するのは高負荷域に限られる.すなわち, RME では微粒化特性が悪いことに加え, 排気管中の温度程度では極めて蒸発しにくいため,触媒内で還元剤として機能しにくいことも考えられる.したがって, RME 使用時に NOx の高い浄化率を得るためには, リッチスパイクの与え方を工夫する必要がある.

PM に関しては,装置上触媒後のみのデータを示す が,高負荷域を除いて,RME では軽油に比べて PM の排出量が上回っている.この原因を明らかにするた め,EEPS を用いて触媒前の PM の粒径分布測定を行 った.その結果を図5に示す.なお,触媒後における PM の粒径分布測定も試みたが,PM 排出濃度が EEPS の測定下限を下回っていたため,排出傾向を正確に得 ることはできなかった.両燃料とも1つ山の粒径分布 を形成するが,RME では軽油に比べて PM の粒径分 布が小粒径側に移行し、その粒子数のピーク値は低い.したがって、RME ではすす生成が抑制されるため、触媒前では極めて低いPM 排出量を示すことが類推できるが、触媒後のPM 排出傾向とは逆になっている.これは、NOx 吸蔵還元触媒のためのリッチスパイクが未反応のまま排出され、SOF(Soluble Organic Fraction)の排出量が増加したためと考えられる.

触媒前における HC と CO に関しては,図2のデー タでも示したように RME が燃え切り性に富むため, いずれの成分も RME の方が低い値を示している.さ らに図4からも明らかなように,触媒による浄化率は いずれの負荷でも高く,触媒後の HC, CO は低く抑 えられる.したがって HC, CO に対しては,特に RME 使用時の対策を施す必要はないものと思われる.

RME の燃費率は,図3のようにすべての負荷で軽 油と比べて約10%悪化する.RME は発熱量が低いこ とに起因して燃料噴射量が増加するためである.少し でも改善するためには,噴射時期の最適化等の処置が 必要であろう.

4.2. JE05 モード試験

JE05 モード走行時における排出ガス成分の時系列 変化を図6に示す.HC,COに関しては定常試験の結 果と同様に,両燃料ともに後半の高速・高負荷部分以 外では極めて低い値であり,高速・高負荷部では軽油 の場合のみで HC,CO 排出量が増加する傾向が見ら れ,RME では顕著な増加は見られない.

NOx に関しては,いずれの時間においても RME の 方が NOx 濃度は高く,特に加速時に増加しているこ とがわかる.この NOx 排出量の相違は,排気温度の 低下から生じることも考えられるが,排気温度は高速 部分で若干 RME の方が低い箇所が見受けられるもの の,両燃料でほぼ同様の排気温度履歴である.したが って,定常試験の結果からも見られるように,RME では触媒の NOx 浄化率が低いのに加え,エンジンア ウトで NOx の排出が増加するため,触媒がそれに対 応しきれなかったものと考えられる.

Fig. 6 Temporal change in exhaust emissions in JE05 mode test

図 7 に JE05 モード試験による排出ガス測定結果を 示す.本図には新長期規制値(HC に関しては非メタ ン系炭化水素 NMHC の規制値)を併記している.HC, CO に関しては,定常試験や JE05 試験の時系列データ からも明らかなように RME の方が軽油よりも低減さ れており,その排出レベルは新長期規制値を大きく下 回っている.

NOx に関しては,軽油,RMEともに新長期規制値 よりも高く,特に RME では軽油よりも多く排出して いる.しかし,定常試験の結果から RME の場合では 大幅な NOx 排出量の増加が予想されるが,実際は定 常試験で見られた程度の急激な増加には至っていな い.JE05 モードはトランジェントモードであり,一概 に定常試験における NOx 排出量と一致するとは考え にくいが JE05 試験における排出量を理解する上で一 つの指針になるものと考え、定常試験から求めた各燃 料における NOx 排出量マップと, JE05 モード走行の 運転ポイントの関係を調べた.その結果を図8に示す. NOx 排出量マップでは,軽油では高回転・高負荷域, RME では加えて低回転・高負荷域でも高い NOx 排出 量が認められるが JE05 運転領域ではこれらの高NOx 排出領域が少なく,比較的低 NOx の領域に分布して いる.したがって, RMEのNOx 排出量の増加が著し くないのは,JE05 モードの運転領域が比較的低回転・ 低負荷に限られるためであると推測できる.ただし, いずれにしても NOx 排出量は新長期規制値をも超え ているため,新たな対策を講じる必要がある.

PM 排出量は,両燃料とも新長期規制値はクリアしており,特に軽油では規制値の約1/2に抑えられてい

Fig. 8 NOx emission map

る.しかし,RME使用時は軽油よりも1.5倍程度高い 排出量を示している.含酸素燃料によりすす生成が低 減できるメリットがこの測定結果からは見られず,こ れに関しても NOx と同様に,定常試験における触媒 後の排出ガス測定結果の傾向と一致している.したが って,トランジェント試験においてもリッチスパイク に起因する SOF が,多量に排出されているものと考 えられる.

4.3. バイオマス燃料に対応するための具体的方策

以上のように,定常およびトランジェント試験を行 い,触媒後のNOx,PM排出ガス特性は軽油の触媒前 後の排出ガス変化と比べて悪化する傾向を示した.こ れらの改善策として考えられる方法を以下に示す. (1)NOx

NOx 排出量は軽油を用いた場合でも新長期規制値 より高いため, RME を用いて NOx を大幅に低減する には,リッチスパイクの適正化による触媒の浄化率改 善のみならず,エンジンアウトの NOx をも低減する 必要がある.具体的には,バイオマス燃料はすす生成 が抑制される燃料であるため,軽油と比べて EGR 率 を高く設定することができることから,高 EGR 率化 により PM の増加を抑制した上で,エンジンアウトの NOx を低減するのが最も有効な手段と考えられる.

Fig. 9 Engine modifications for low emission biodiesel

(2) PM

NOx 対策として,極端に EGR 率を高めると PM が 増加する可能性があるため,これに高過給を追加する ことにより空気量を確保することで,PM の増加を抑 えることができる⁷⁾.また,バイオマス燃料使用時に 排出される PM 中の主成分は SOF であると考えられ, この低減には後段の酸化触媒として強酸化触媒を採 用するのが最も効果的である.

(3) 燃料噴射系

RME の燃料性状から類推すると, 微粒化・蒸発特 性が悪いことが予想されるため,高噴射圧等の採用に より改善することが望ましい.加えて,100%バイオ マス燃料で長距離走行を行うことを考慮すると,燃料 配管からの燃料漏れや配管腐食への対策として,配管 の材質変更等の処置が必要である.

5. まとめ

既存の最新型ディーゼルエンジンにバイオマス燃料(RME)を適用し,燃焼・排出ガス特性を従来の軽 油の場合と比較した結果,以下の結論が得られた.

- (1) 軽油, RME 双方の着火遅れに相違はないが, 筒内 圧および熱発生率のピーク値は RME の方が軽油 に比べて若干増加する.
- (2) 定常試験における RME の NOx 排出量は, 触媒前 で軽油と比べて増加することに加え RME を用い た場合には触媒による浄化率が低下する. PM 排 出量に関しては, 触媒前では RME の方が軽油と 比べて排出量が少ないのに対して, 触媒後では逆 に増加する. HC および CO 排出量は触媒の効果 によりどちらの燃料も十分低い値を示す.
- (3) JE05 モード試験では, HC, CO 排出量は両燃料と
 もに極めて低いが, RME での NOx, PM 排出量は

軽油と比べて増加し、特に NOx に関しては新長期 規制値をも上回った.なお,この JE05 モード試 験の結果は,定常試験の排出ガス試験結果と傾向 が概ね一致する.

(4) NOx 低減には,含酸素燃料のすす生成抑制効果を 利用した高 EGR 化,およびリッチスパイクの工 夫が必要である.高 EGR 化に加え高過給を行う ことにより,PM を抑制することが期待できる. さらに,バイオマス燃料使用時に排出される PM 中の主成分である SOF は,強酸化触媒により除去 可能である.

6. 謝辞

本研究は,国土交通省受託「バイオマス燃料対応自動車開発促進事業」の一環として行われた.また,当研究所増永勝幸氏の多大なるご協力があったことをここに記し,謝意を表する.

参考文献

- 1) 環境省 中央環境審議会:今後の自動車排出ガス 低減対策のあり方について(第八次答申),(2005).
- Nakatani, K. et al. : Simultaneous PM and NOx Reduction System for Diesel Engines, SAE Paper 2002-01-0957, (2002).
- 3) 星野 崇, 塩谷 仁:バイオディーゼルフューエ ル規格化の現状と今後の展開, 自動車技術会 デ ィーゼル機関部門・燃料潤滑油部門合同委員会 資料, (2005).
- Szybist, J. P. et al. : Behavior of a Diesel Injection System with Biodiesel Fuel, SAE Paper 2003-01-1039, (2003).
- Graboski, M. S. et al. : Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines, Progress in Energy and Combustion Science, Vol.24, No.2, pp.125-164, (1998).
- United States Environment Protection Agency : A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions Draft Technical Report, EPA420-P-02-001, (2002).
- 7) 青柳 友三ほか:単気筒エンジンによる超高過給 ディーゼル燃焼の研究(第1報)過給圧力を変化 させた場合の燃焼特性,自動車技術会論文集, Vol.35, No.3, pp.35-40, (2004).