床面材料定数の違いがサイトアッテネーションに与える影響について

自動車安全研究領域 長谷川 智紀 伊藤 紳一郎 松村 英樹

1.はじめに

近年、電子技術の発展にともない、自動車において も、コンピュータやセンサが多く用いられるようにな ってきた。特に、自動車の安全性を高めるために、自 動車の状態をセンシングし、安全に停止、または安全 に回避できるように車両の挙動を制御するといった 手法が用いられるようになってきた。これは、コンピ ュータの発達、センシング技術の発展なしでは成し得 ないものである。

一方、コンピュータの発達により、EMC (ElectoroMagnetic Compatibility:電磁的両立性)の 問題も顕著になりつつある。EMC 問題では、電磁波 を放射し、周辺の電子機器へ影響を与えるものと、周 辺の電磁波の影響により誤動作を引き起こすものの 2種類に分けることができる。自動車においては、前 者は例えばエンジンのイグニションや車載コンピュ ータのクロックなどがあげられる。また、後者は放送 波や違法無線等の大電力電磁波や、微弱でも携帯電話 などのように装置の近距離から放射する電磁波など があげられる。

これらの耐性や放射量を測定・試験する場として測 定サイトがある。測定サイトとしては、屋外サイト(以 後オープンサイト)や電波暗室などが使われる。多く の規格では、測定結果の再現性を良くするため、これ らのサイトの大地面を金属面にすることを強制また は強く勧告している。

しかし、自動車における測定サイトの規定において は、床面材料は規定されておらず、オープンサイトに 相関があることのみ記載されている。相関の基準とな るオープンサイトの大地面材質も規定されていない ため、測定サイトによって、測定結果が変わり、試験 の合否に影響する可能性が大いにあり得る。

そこで、本報告では、床面材料がサイトの伝搬特性 であるサイトアッテネーションに与える影響につい て、水平偏波の場合について検討を行ったので、報告 する。

2.サイトアッテネーション

測定サイトが EMC の測定に適しているかどうか は、測定サイトの伝搬特性を測定し、評価を行う。

測定サイトは、半無限大の広さをもつ測定サイトが 理想的であるが、実際はサイトの周辺に測定に影響を 与えるものが多々ある。例えば、オープンサイトであ れば、樹木や支柱、金属大地面の状況等があげられる。 電波暗室であれば、暗室に使われている電波吸収体の 性能等がある。これらの条件により測定サイトの伝搬 特性は理想とされる伝搬特性から離れていくことに なる。

そこで、理想とされる測定サイトの伝搬特性と、利 用する測定サイトの伝搬特性を比較し、利用する測定 サイトの評価を行う必要がある。

その時用いる評価手法がサイトアッテネーション である。

サイトアッテネーションは、被試験機器の代わりに 送信アンテナを配置し、伝搬特性を測定する方法で、 図1に示すように、送・受信アンテナおよび送信器・ 測定器を配置して、規格に基づき測定を行う。その後、 同軸ケーブルをアンテナからはずし、同軸ケーブル同 士を直結させて(図2)測定を行う。アンテナ接続 時と、同軸ケーブル直結時の測定電圧の比のうち、 EMC 測定時に受信アンテナを走査する場合は、走査 した際の最大値、受信アンテナを固定して測定する場 合は比そのものが、サイトアッテネーションとなる。

3.シミュレーション

実験により材料定数を変化させて測定するには、膨 大な時間と労力が必要となるため、コンピュータシミ ュレーションを実験の代わりとして用いた。

今回用いたシミュレーションには次の式から二つ のダイポールアンテナ間の伝搬特性をモーメント法 を用いることにより計算する ¹⁾。

アンテナ#1 と#2 のふたつのアンテナにおける電界 E_1 および E_2 は、自身によって生じる電界 E_{11} , E_{22} 、 他のアンテナによって生じる電界 E_{12} , E_{21} 、および、 電源と負荷の状態を示す E_a , E_b を用いて、式(1),(2) のように表す。そして、アンテナを微小間隔 s_1 , s_2 に 分割し、 s_1 から s_2 や s_2 から s_2 といった各微小間隔間 における影響を計算し、その総和から各アンテナ間に おける相互結合を計算を行う方法がモーメント法で ある。

$$E_{1} = E_{11} + E_{12} + E_{a}$$

= $\int E(s_{1}, s_{1}')I_{1}(s_{1}')ds_{1}' + \int E(s_{1}, s_{2}')I_{2}(s_{2}')ds_{2}' + E_{a}(s_{1})$
= 0 (1)

$$E_{2} = E_{21} + E_{22} + E_{b}$$

= $\int E(s_{2}, s_{1}')I_{1}(s_{1}')ds_{1}' + \int E(s_{2}, s_{2}')I_{2}(s_{2}')ds_{2}' + E_{b}(s_{2})$
= 0 (2)

ここで、アンテナが水平偏波の場合は上式の *E*(*s*,*s*')項が

$$E(s, s') =$$

$$- j30k(\cos^2\phi \sin^2\psi' + \sin^2\phi)$$

$$\cdot (G_o(s, s') + R_{eq}G_t(s, s'))$$
(3)

となる。 G_o および G_t は直接波と反射波のグリーン関数で、

$$G_o = \frac{\exp(-jkR)}{R} \tag{4}$$

$$G_t = \frac{\exp(-jkR')}{R'} \tag{5}$$

である。

アンテナ間距離が近い場合、水平偏波のアンテナを 用いると、各微小間隔間で、位置によっては水平偏波 の反射係数のみでは実際の反射係数を表すことがで きず、式(6)の *R_{ea}*を用いる必要がある。

$$R_{eq} = \frac{R_h \sin^2 \phi - R_v \cos^2 \phi \sin^2 \psi'}{\sin^2 \phi + \cos^2 \phi \sin^2 \psi'} \quad (6)$$

また、 R_h および R_v は、水平偏波および垂直偏波の 時の反射係数で、相対屈折率nと入射角 θ からフレネ ルの反射係数式より、次のように表される。

$$R_{\nu} = \frac{n^2 \cos \theta - \sqrt{n^2 - \sin^2 \theta}}{n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta}}$$
(7)

$$R_{h} = \frac{\cos\theta - \sqrt{n^{2} - \sin^{2}\theta}}{\cos\theta + \sqrt{n^{2} - \sin^{2}\theta}} \qquad (8)$$

ただし、ここでは、透磁率は1としている。また、 空気対物質における相対屈折率nは、誘電率 ε および 導電率 σ を用いて、次の式で表すことができる。

$$n = \sqrt{\kappa - \frac{j\sigma}{\omega\varepsilon_0}} \qquad (9)$$

ただし、 ε_0 は真空中の誘電率。 ω は角周波数を示し、周波数 fに対し、 =2 fで得られる。また、 κ は比誘電率を示し、次のように表される。

$$\kappa = \frac{\mathcal{E}}{\mathcal{E}_0} \tag{10}$$

また、 E_a , E_b は#1 に発信器、#2 に測定器を接続詞 た場合、次のようになる。

$$E_a(s_1) = (V_s - Z_s I_1(0))\delta(s_1) \quad (1 \ 1 \)$$

 $E_{b}(s_{2}) = (-Z_{L}I_{2}(0))\delta(s_{2}) \quad (12)$

ただし、 V_s が発信器の起電力、 Z_s が発信源の内部 インピーダンス、 Z_L が測定器の内部インピーダンス、 δ がデルタ関数である。

これらの式を用い、床面材質を様々に変更し、アン テナに流れる電流 / を計算、電流 / から伝搬特性を求 める。

4. サイトアッテネーションの計算

サイトアッテネーションの計算をするにあたって、 アンテナの配置等の条件を CISPR16-1 に記載されて いる条件を用い、送受信アンテナ間距離 3m、送信ア ンテナ高 2m、受信アンテナ高の走査幅を 1~4m とし た。周波数は 30~1000MHz とし、アンテナは測定で 用いるアンテナに合わせ、各周波数の半波長ダイポー ルを用いることとした。

また、アンテナの特性を取り除いた正規化サイトア ッテネーション(以後 NSA)を計算するに当たって 必要とされる半波長ダイポールアンテナのアンテナ 係数は、参考文献²⁾にあるモーメント法によるアンテ ナ係数の計算方法を用いて計算した

床面の材料定数としては、導電率 $\sigma \ge 0$ から銅の導 電率である 5.76×10^7 [S/m]、比誘電率 $\kappa \ge 1$ から 128 まで変化させて、計算を行った。

4.1.シミュレーション結果の妥当性

シミュレーションの妥当性の確認のために、当研究 所にある電波暗室(床面:大地等価床)における NSA 測定結果および、CISPR16-1AnnexG にある理論値と の比較を行った。

電波暗室における測定条件として、アンテナとして シュワルツベック製のダイポールアンテナを用い、半 波長ダイポールとして利用した。また、送信アンテナ は 2m の高さに配置できる発泡スチロール上に配置 し、受信アンテナはアンテナ昇降機により 1~4m ま で走査して測定を行った。測定器としては、アジレン トテクノロジー製ベクトルネットワークアナライザ E8358A を用い、同軸ケーブル端を基準面とする SOLT校正を行った後のSパラメータを測定すること により、図1,2の測定と同等の測定を行った。測定 周波数は、30,80,100,300,500,700,1000MHz である。

シミュレーション値および理論値・測定値を図4に 示す。

まず、シミュレーション結果の妥当性について検討 をする。当研究所の電波暗室の床面は比誘電率4の床 面と同等の伝搬特性が得られているという結果が以 前に得られている3。そこで、導電率0,比誘電率4 の計算結果(青線)と実験結果(菱形点)を比較する と、全測定周波数においてよい一致が得られた。

同様に、CISPR16-1Annex.G に示されてある NSA 測定の理論値(+点)との比較を、金属床面を想定し たシミュレーション結果(赤線)を比較すると、 50MHz 以上においては、良好な一致が得られている が、50MHz 以下では、差異が大きくなり、最大で 4.55dB になっている。

この差異の原因の一つとして、シミュレーションで は半波長ダイポールとしているのに対し、理論値にお いては共振ダイポールを用いている。そのため、アン テナ係数を差し引くときにアンテナの影響を全て差 し引かれていないためと考えられる

この差異以外では、シミュレーション結果は良好で あると言える。

4.2 シミュレーション結果の検討

このシミュレーションを用いて、床面材料の定数を 変化させた結果を図 5,6 に示す。図 5 に比誘電率を1 とし、導電率を変化させた場合の正規化サイトアッテ ネーションの計算結果、図 6 に導電率を0 とし、誘電 率を変化させた場合の正規化サイトアッテネーショ ンの計算結果である。

4.2.1 導電率を変化させた場合

図5を見ると、導電率を変化させると、設定した比 誘電率が1であるため、導電率が0に近いと自由空間 のNSAに、導電率が大きくなるにつれて金属床面に おけるNSAに近づくことがわかる。全ての導電率に よるNSAは、自由空間のNSAと金属床面のNSAの 間に入っていることがわかる。

4.2.2 比誘電率を変化させた場合

図6を見ると、比誘電率を変化させると、比誘電率 が高いほど、床面における反射が大きくなるため、金 属床面における NSA に近づくことがわかる。比誘電 率を変化させた場合も、導電率を変化させた場合と同 様に、全ての比誘電率における NSA は、自由空間の NSA と金属床面の NSA の間に入っていることがわ かる。

5.おわりに

今回、モーメント法を用い、床面材質を変化させて、 サイトアッテネーションへの影響について検討を行 った。

その結果、CISPR16-1 にあるアンテナ間距離 3m、 送信アンテナ高 2m、受信アンテナ高走査幅 1~4m の 配置においては、床面材質を導電率・比誘電率の両者 を変数として変化させたところ、正規化サイトアッテ ネーションとしては、全ての材質において、自由空間 中の NSA (正規化サイトアッテネーション)と金属 床面における NSA の間に入り、両者の差異は最大で 5.7dB、平均で 4.1dB となった。

今後の課題として、今回は、水平偏波のみの比較で あるため垂直偏波についての検討、また、ECE R10 の測定のような受信アンテナを固定して測定を行う 場合の NSA における床面材質の影響についての比較 検討があげられる。

謝辞

本研究を行うにあたり、貴重な御意見を頂きました東 北大学通信研究所藤井勝巳助手に深謝致します。

図5:導電率を変化させた場合の正規化サイトアッ テネーションの変化(比誘電率:1)

図6:比誘電率を変化させた場合の正規化サイトア ッテネーションの変化(導電率:0)

参考文献

1) Akira SUGIURA, el., "Site Attenuation for Various Ground Conditions", Trans. IEICE, Vol.E73, No.9, pp.1517-1524(1990)

2)藤井勝巳,「EMI 測定用アンテナ解析へのモーメント法の適用」,電子情報通信学会2004年総合大会
 3)伊藤紳一郎,「電波暗室における特性の測定例について」,自動車技術会1998年春季大会