DME を燃料とするクリーンディーゼルエンジン の研究(第7報)

- 過給と EGR の併用による排出ガス改善効果の解析 -

環境研究領域

鈴木 央一 佐藤 由雄 安 秉一

1.はじめに

DME は燃焼ですすを生成しないため、DME ディ ーゼルエンジンにおいては、大量 EGR による大幅な NOx 低減が可能となる^{1、2)}。別報にて発表されてい る次世代低公害車プロジェクトの大型DMEトラック 用エンジンにおいても、大量 EGR を行うことで、ベ ース状態よりも50%以上のNOx 低減が前提とされて いる。しかしながら大量 EGR を行うと、同時に酸素 量が減少するため、抜本的な NOx 低減が可能となる ような高い割合(たとえば 60%)で EGR を行うと、 未燃 HC や CO 排出が急激に増加し、燃費も悪化する ことを既報²⁾で示した。とりわけ高負荷領域ではその 傾向が顕著に表れ、NOx 低減に大きな制約になる。

一方、ディーゼル機関における過給は、性能向上と 排煙低減がはかれることから、重要な技術であり広く 用いられている。とくに PM 排出規制が大幅に強化さ れる 2005 年規制適合ディーゼル機関ではほぼすべて が過給器を備えることになると予想される。

DME エンジンでは PM 排出がきわめて低いことに 加えて、通常ディーゼルほどの高圧噴射が望めないこ とから、過給を行う動機が少なく、DME エンジンに おける過給の効果について研究が行われたケースは あまり見られない。しかしながら、本報告では、大量 EGR を行うと同時に、より多くの空気(酸素)を燃 焼室に導入する手段として過給を用い、燃料消費率や CO 排出の悪化なしに大幅な NOx 低減を図ることを 目的とした。

2.実験装置および実験条件

2.1.実験装置

図1に実験装置構成の概要を示す。供試機関には排気 量約1Lの単気筒ディーゼル機関を用いた。その諸元

を表1に示す。供試機関は噴射系およびそれに伴うシ リンダヘッドの微少な加工を除いて軽油を使用する ベース状態から変更を加えていない。噴射系はDME 用に試作したコモンレール式で、コモンレール圧力は 30MPa とした。インジェクタは磁歪素子により作動 制御されるパイロット弁により、針弁に加わる燃料圧 力を制御し噴射制御を行う方式である。ノズル噴孔径 は0.5mm×5 噴孔とした。吸気系に関して EGR およ び過給を行った。過給器は容積型加圧装置を別途電動 機により駆動するものである。EGR ガスおよび過給 機により加圧したガスは、共に熱交換器により室温相 当まで冷却されるが、EGR 率の高い条件においては3 ~5 程度の上昇がみられた。なお、大量 EGR を可能とするため、排気系に無過給時において約 7kPaの 排気抵抗がかかる絞りを設定した。

燃料として用いる DME は、工業用(純度 99.9wt%) のものとし、各部の潤滑性確保のため、添加剤 (Lubrizol)を 800ppm 混合した。燃料消費量計測に ついては、ジルコニア式空燃比計を用いた排出ガスの 空燃比測定、または排出ガス分析計による測定結果か らカーボンバランス法を用いて算出した。原理的に精 度がよりよいと考えられることから、空気過剰率 < 1.6 では空燃比計、それ以上では排出ガス分析計の値 より求めた。なお、排出ガス計測について、CO、CO2 には NDIR、THC には HFID、NOx には HCLD を それぞれ用いた。

2.2.試験条件

運転はすべて定常状態とし、機関回転速度は 1,920rpm 一定とした。負荷率は NA(自然給気)に おけるベースディーゼル機関のスモークリミットに よる全負荷に対して、40%および 80%とした。過給、 EGR なしのベース条件におけるそれぞれの空気過剰 率は 3.1 および 1.8 である。燃料噴射時期については、 ベース条件で燃費率が最適となった上死点前 9deg.CA(80%負荷)および 6deg.CA(40%負荷) とした。ただし大量 EGR により着火遅れが増大し、 燃費悪化がみられた際には、適宜進角させた。過給条 件においては、55kPa の過給圧で過給を行った。EGR 率は、EGR を行わないときの吸入空気量 Q、EGR 時 の吸入空気量を Qe としたとき、

EGR ratio = (Q - Qe) / Q

より求めた。また、その際の吸気酸素濃度については、 排気ガス中の酸素濃度を測定し、そのガスが EGR 率 だけ新気に混ざるものとして算出した。

3.実験結果および考察

3.1.過給時の EGR による NOx、CO 排出挙動

一般にディーゼル機関において、EGR による NOx 低減効果は吸気酸素濃度と強い相関がある。図2は、 吸気酸素濃度に対する NOx および CO 排出量を示し ている。EGR 率が高まるほど吸気酸素濃度は減少し ていくので、図の右から左に行くほど高い EGR 率の 条件である。図より EGR による NOx 低減効果につ いては、過給の有無および負荷率の違いはほとんど影 響せず、吸気酸素濃度のみが影響する。いずれの条件

図 2 40%および 80%負荷における吸気酸素濃度と NOx および CO 排出量の関係

においても、吸気酸素濃度が約19.2%でNOx は半減 し、同16%になるとほぼ1/10、同14%になると1/20 のレベルにまで低減できる。40%負荷では、吸気酸素 濃度 12%程度 (EGR 率は NA 時 60、過給時 75%) でも運転が可能であったが、その際の NOx 排出は ppm 濃度で一桁を記録するまでに減少した。以上よ り、過給 DME エンジンにおいても、EGR による NOx 低減効果は吸気酸素濃度に依存し、EGR 率が高けれ ば高いほど NOx は低減する。しかしながら、高率 EGR により酸素量が減少すると、CO 排出が急増し、 EGR の上限となる。40%負荷時においては、過給時 に CO 排出がやや抑制されるものの、NA 時との差は 大きくない。それに対して、80%負荷時には、NAで は吸気酸素濃度 18%程度から CO 排出が急激に増加 するが、過給時に同レベルの CO 排出となるのは、吸 気酸素濃度15%のときで、それぞれのNOx排出量を みると、1.7g/kWhと0.29g/kWhとなり、その違いは 非常に大きい。このことから、EGR 時に過給を行う ことは、特に高負荷時に、より高い EGR 率において も CO 排出を抑制する効果があるといえる。

3.2. が CO 増加などに及ぼす影響

CO あるいは THC の排出は、主にシリンダ内で燃

焼が行われる部分の酸素が不足し、燃料の一部が不完 全燃焼、いわば燃焼が悪化することによりおきる。し たがって、燃焼室内に酸素が十分あるかどうかを検証 することが、排出傾向の把握につながるといえる。し かしながら、瞬時的な局所空燃比を把握することは容 易でないため、その指標として、燃焼室内全体の平均 空気過剰率 に着目した。図3は に対するCOおよ び THC 排出量を 40、80%負荷、過給の有無それぞれ の場合について示している。いずれも が1に近づく と急激に増加する傾向を示す。CO については 40%負 荷で、THC については80%負荷の場合に、より高い 排出量となった。過給の有無については、80%負荷で は過給を行った場合の方が CO の急増し始める が やや低くなるが、40%負荷では反対で、 の他に、軽 負荷の過給時には完全酸化するだけの温度に至らな い領域ができると考えられる。こうした違いはみられ るものの、大まかな目安として、図中に線で示した が 1.7 以上あれば CO や THC の大幅な増加を招くほ どの燃焼悪化は回避できるといえる。すなわち酸素濃 度に依存する NOx に対し、CO、THC 排出抑制には 酸素の量が十分にあるかどうかがポイントとなる。

図4は に対する燃料消費率を、40 および 80%負荷、過給の有無それぞれの場合について示している。 ここでは EGR およびそれにともなう の違いによる 変化を見ることを目的としているため、過給による外 部仕事は考慮していない。いずれの条件においても、

>1.8 程度までの EGR であれば燃費率がやや改善 するものの、1.5 を下回る高 EGR 率条件ではやや悪 化する傾向が見られた。EGR を行った場合、吸気 CO2 濃度が高まり比熱比が高くなるため圧縮仕事が低減 し、燃費改善につながったと考えられるが、 <1.5 まで低下すると、燃焼悪化にともない燃費率も悪化す ると考えられる。したがって、燃費の面からも は 1.5~1.6 を下回らない方がよいといえる。

過給と EGR 併用時の燃焼挙動について、図5 に気 筒内圧力および熱発生率を示す。過給の有無によら ず、EGR 時には着火遅れが大きくなり(ただし、過 給・EGR 併用時には、噴射時期を進角させたために 着火開始は早まっている) その結果予混合燃焼の熱 発生率ピークは高くなった。通常のディーゼル燃焼で は EGR により予混合燃焼が抑制される傾向がある一 方、着火遅れ拡大により予混合燃焼最大値が高くなる 場合には NOx 排出が増加する。しかし今回用いた

図 5 過給および EGR 時の気筒内圧力と熱発生率

DME 機関ではそのような傾向は見られない。また、 燃焼期間について、過給時には上死点後 40deg.CA ま でにほぼ終了しているが、NA では上死点後 60deg. CA 以降まで熱発生がみられる。一方で、EGR の影響 は小さい。過給・EGR 併用時の EGR 率は 55%で、 そのときの は1.5 でベース時よりも低く、2,000ppm の高い CO 排出がみられた条件であるが、熱発生率か ら燃焼悪化の要因を見いだすことは困難であった。

3.3. と吸気酸素濃度からみた NOx 低減効果の 解析と予測

各条件について、EGR 率を変化させることによる 吸気酸素濃度と の関係について、図6に示す。吸気 酸素濃度が 19.2%以下だとベースよりも 50%以上、 16%以下だと 90%以上の NOx 低減が可能となる一 方で、燃焼悪化を回避するためには を 1.7以上とす る必要があることから、図で着色した部分にプロット のあることが望まれる。80%負荷の NA 条件では、そ の領域を通らず、燃焼悪化なしに大幅な NOx 低減を 行うことが難しいことがわかる。それに対し、55 k Pa 過給を行った場合には、40%負荷の NA 条件とほ ぼ同じ傾向線上に位置し、限られた領域ながら 90% 以上の NOx 低減が可能となり、過給を行うことで高 率 EGR による大きな NOx 低減ポテンシャルを得る ことができる。また、40%負荷で過給を行うと、より 広範な EGR 率で 90%以上の低減が可能となる。

吸気酸素濃度と については、吸気温度や燃料消費 率が同等であると仮定した場合、ベース条件から過給 や EGR を行った場合について予測計算を行うことが できる。ここでは、EGR による NOx 低減がきわめて 困難と予想される 95%負荷について、ベース条件の のデータから、55kPa の過給と EGR を行った場合の 効果を予測することとした。図7にその結果を示す。 まず、NA では、EGR なしですでに が1.7 を下回っ ている。 実際この条件では CO の排出濃度が 1,400pm となっており、EGR なしですでに CO 急 増領域に入りつつあり、EGR による NOx 低減は NA ではほとんど不可能であることがわかる。それに対し て、過給時には EGR 率 20%で NOx を 50%以上、同 30%後半では 90%近い NOx 低減が可能と予想され、 過給がきわめて効果的であることがわかった。

4.まとめ

DME エンジンにおける過給と EGR 併用時の排出 ガス改善効果について以下にまとめる。

- 過給時には CO 排出が低減できるため、より高い 割合で EGR を行っても CO の増加を抑えること ができ、とくに高負荷時に大幅な NOx 低減が可 能となった。
- NOx 低減効果には吸気酸素濃度が、燃焼悪化に よる CO や THC 排出増加には が支配的要因と なる。CO 等の増加を抑えるために >1.7 を維

図 7 EGR 率による吸気酸素濃度との関係 (95%負荷時の予測計算)

持しつつ、吸気酸素濃度 19.2%なら 50%、同 16% なら 90%の NOx 低減が可能となる。また、過給 を行うと同一の吸気酸素濃度でより高い とす ることができる。

3 . 上記関係を用いることで、ベース条件のデータか ら過給と EGR による NOx 低減効果を予測する ことが可能となり、NOx 低減可能レベルを簡便 に把握できる見通しが得られた。

おわりに

本実験を行うにあたり、小林啓樹氏に多くの支援を いただいた。ここに謝意を表する。

参考文献

1) 佐藤由雄ほか、第29回交通安全公害研究所発表 会講演概要 p83-86, 1999

2) 安乗一ほか、自動車技術会 2004 年春季学術講演 会前刷集 14-04, p17