燃料設計によるディーゼル機関の高効率化、 低公害化に関する研究(第5報)

- 初期燃料温度の上昇による減圧沸騰噴霧の微粒化向上効果に関する数値解析 -

環境研究領域	川野 大輔	鈴木 央一	石井 素	後藤 雄一	小高 松男
同志社大学	千田 二郎				

1.はじめに

本研究では,高沸点燃料と低沸点燃料を混合することにより,直接噴射式ディーゼル機関における噴霧・ 燃焼特性を制御する手法を提案している.特に,低沸 点燃料の混合により,燃焼室内で減圧沸騰を起こすこ とが可能である.また,近年では代替燃料としてLPG や DME などの液化ガス燃料が用いられるようにな り,これらの燃料も減圧沸騰を起こす可能性がある. 減圧沸騰は,優れた微粒化向上効果を持つことが知ら れているが⁽¹⁻²⁾,燃料の減圧沸騰に関する研究は数少 ない.そこで本研究では,二成分混合燃料を対象とし, KIVA3V⁽³⁾をベースとし気泡核生成,成長,崩壊を考 慮した減圧沸騰噴霧モデルを構築し,その数値解析を 行った.加えて,定容容器による実験結果との比較を 行い,本モデルの妥当性を検証した.

2.減圧沸騰噴霧モデル

本モデルでは,千田らの減圧沸騰モデル⁽⁴⁾を基に, ノズル内部と燃料液滴内における気泡核生成・成長, および気泡の崩壊に伴う燃料液滴の分裂を考慮して いる.図1に減圧沸騰モデルの概略図を示し,以下に 本モデルの概要を解説する.

2.1. 気泡核生成

気泡核生成は均一および不均一核生成に大別され るが,本研究では最も生成頻度が高いと思われる,溶 存気体に起因する不均一核生成のみを考慮する.一般 に,過熱度 *ΔT*の液体中における半径 *R*を持つ気泡核 数 *N* は,核生成理論より次式の形で与えられる⁽⁵⁾.

$$N = C \cdot \exp\left(\frac{-\Delta A}{k \cdot \Delta \theta}\right) \tag{1}$$

$$\Delta A = \frac{4}{3}\pi R^2 \cdot \sigma \tag{2}$$

Fig. 1 Schematic diagram of flash-boiling model

 $C: 定数, k: ボルツマン定数, <math>\Delta \theta$: 過熱度, σ : 表面 張力

本モデルでは,時間 tの経過に伴い気泡核数が減少すると仮定し,気泡核数を次式で与える.

$$N = 1.11 \times 10^{12} \cdot \exp\left(\frac{-5.28}{\Delta\theta}\right) \left\{ 10^{-4.34 \exp(-5\tau)} \right\}$$
(3)

2.2.気泡成長

生成された気泡は球状に成長すると仮定し,以下に 示す Rayleigh-Plesset の式⁽⁶⁾により,その成長率が与え られる.

$$R\ddot{R} + \frac{3}{2}\dot{R}^{2} = \frac{1}{\rho}(P_{w} - P_{r})$$
(4)

 $\rho: 燃料の密度, P_r: 気泡周囲の流体圧力$ $気泡壁の流体圧力 <math>P_w$ は次式で表される⁽⁷⁾.

$$P_{w} = P_{v} + \left(P_{r0} + \frac{2\sigma}{R_{0}}\right) \left(\frac{R_{0}}{R}\right)^{3n} - \frac{2\sigma}{R} - \frac{4\mu_{l}\dot{R}}{R} - \frac{4\kappa\dot{R}}{R^{2}}$$
(5)

P_v:燃料の飽和蒸気圧, P_{r0}:気泡周囲の初期流体圧力, R₀,初期気泡径, μ_l:燃料の粘度, κ:表面粘性係数

2.3. 気泡崩壊

燃料液滴中の気泡の成長により気泡体積が増大す ると,表面張力や粘性が液滴を保持できず,液滴はや がて分裂する.本モデルでは,気液二相流における気 泡の体積割合を示すボイド率*ε*で,この分裂を規定す る.ボイド率*ε*は次式で与えられる.

$$\varepsilon = \frac{V_{bubble}}{V_{bubble} + V_{liquid}} \tag{6}$$

このボイド率が臨界ボイド率 \mathcal{E}_{c} を超えたときに分裂 が起こるものとし,本モデルでは $\mathcal{E}_{c}=0.55$ とする.また,液滴が分裂する際には,図2で示すように,気泡 数の2倍の液滴群に分裂すると仮定する.

2.4.多成分燃料噴霧モデル

本研究では,二成分混合燃料の減圧沸騰噴霧を解析 するため,以前提案した多成分燃料噴霧モデル⁽⁸⁾を使

Fig. 2 Breakup caused by bubble disruption

用する、本モデルでは,NIST Mixture Property Database⁽⁹⁾のソースプログラムを組み込むことにより,温 度・圧力依存性を考慮した詳細な多成分燃料の輸送物 性値を算出する.混合燃料中の各成分の気液平衡推算 を行う際には,Peng-Robinson 状態方程式とフガシティの概念を取り入れ,多成分燃料の非理想性を考慮し ている.また,KIVA3Vオリジナルコードでは液滴内 の温度は一定と仮定しているが,本モデルでは簡略的 に温度勾配を考慮するため,液滴内を内部と外部に分 離し,それぞれの間で熱伝達が生じる二領域モデルを 採用している.さらに,液滴分裂モデルとして TAB (Taylor Analogy Breakup)モデルが用いられているが, 分裂後の液滴径が過小に見積もられるため,妥当な値 となるようにモデル中の係数を変更した.

3.実験および計算方法と設定条件

上に示した本モデルの妥当性を検証するため,噴霧 のシャドウグラフ撮影を行った.その際に用いた定容 容器の概略図を図3に示す.この定容容器には2枚の 石英ガラスが取り付けられており,噴霧の撮影を可能 にしている.また計12本のヒータにより雰囲気温度 を,窒素を充填することにより雰囲気圧力を調整する ことができる.噴霧の撮影は高速度カメラ(撮影速 度:18000 f.p.s.)で行った.

実験条件を表1に示す.供試燃料には,n-ペンタン とn-トリデカンをモル分率でそれぞれ75%,25%混合 した混合燃料を用いた.また,雰囲気圧力は0.1 MPa,

Fig. 3 Schematic diagram of constant volume vessel

Fuel	C₅H ₁₂ / C ₁₃ H ₂₈ 0.75 : 0.25 (mol %)		
Ambient gas	N ₂		
Ambient pressure	0.1 MPa		
Ambient temperature	440 K		
Hole diameter	0.2 mm		
Injection pressure	15.0 MPa		
Initial fuel temperature	320, 380, 440 K		

Fig. 4 Computational grid

雰囲気温度は 440 K で一定とし,初期燃料温度 T_fを 320,380,440 K に変化させた.

数値解析の際の計算メッシュを図 4 に示す.幅 60 mm,高さ 100 mmの円筒型定容容器を想定し,それ ぞれを 70 メッシュに分割した.また,実験結果と比較するため,計算条件は実験条件と一致させている.

図 5 に気液平衡推算により得られた供試燃料の圧 力・温度線図を示す.混合燃料の場合には,液相側の 飽和液線と気相側の飽和気線に囲まれた二相領域が 存在し,この二相領域内には気液が共存する.また, 同図には各初期燃料温度に設定した際の相変化状態 を示す.*T_f=320 K*の場合は,噴射後飽和液線上に到達 するが,二相領域内には入らないため,減圧沸騰は生 じない.それに対して*T_f=380*,440 K の場合では,相変 化が噴射直後に二相領域に到達するため減圧沸騰が 生じる.特に*T_f=*440 K では噴射直後に雰囲気状態に

Fig. 5 Initial fuel temperature variations

到達し,減圧度(噴射圧-雰囲気圧)は*T_F*380 K に 比べて極端に大きい.

4.結果および考察

4.1.液滴および蒸気濃度分布

図6に各初期燃料温度の液滴および蒸気濃度分布を 示す.また,同図にはシャドウグラフ撮影により得ら れた画像も併記している.減圧沸騰が生じないT=320 Kでは,両成分ともほとんど蒸発しない.T=380Kに なると, n-トリデカンは蒸発しないものの, n-ペンタ ンは蒸発し始める.ただし,両初期燃料温度で液滴の 分布はほぼ変化していない.これは,T=380Kでも減 圧沸騰が生じるものの,減圧度が低いために激しい減 圧沸騰が生じないためである .それに対して T_产440 K では他の初期燃料温度の傾向とは大きく異なり, n-ペ ンタン, n-トリデカンともに噴射初期から蒸発してい る.さらに噴霧幅も噴射初期から大幅に増加してい る.この現象は,図6のシャドウグラフ撮影結果から は見られないが,図7のノズル近傍の拡大画像では T=440 K において希薄混合気が半径方向に大きく拡 がっている.したがって,本モデルにより,T_F440K での急激な噴霧幅の増加が表現できていることが確 認できる.また,n-ペンタンの高濃度領域は主に噴霧 上流部に位置し, n-トリデカンの高濃度領域はさらに 下流部にも存在している.一般に,多成分燃料は分留 性状に従って蒸発することが知られており(10),本研究 で用いた多成分燃料噴霧モデルを使用することによ り,この効果が再現できている.しかし,T=440Kで は計算結果により得られた噴霧先端到達距離が実験 結果に比べて過小に見積もられており,これに関して は次節で詳説する.

Table. 1 Experimental conditions

Fig. 6 Droplet and vapor distributions

4.2.噴霧先端到達距離

図8に各初期燃料温度における噴霧先端到達距離を 示す. $T_{f=320,380$ Kの場合は図6で示されるように液 滴が多く存在するため,時間経過に比例して噴霧先端 到達距離は増加する.ただし,噴射開始からの時間 $t_{inf}=0.4$ ms付近から $T_{f=380$ Kでは先端到達距離が短く なる.これは, $T_{f=380$ Kの場合では $t_{inf}=0.4$ msから弱 い減圧沸騰効果が出始め,燃料液滴が微粒化されたた めであると考えられる. $T_{f=440}$ Kでは,激しい減圧沸 騰を伴うため,噴射期間を通じて先端到達距離は短く なっている.実験結果と比較すると, $T_{f=320,380}$ Kで は変化率は類似しているものの,先端到達距離は過大 評価されており,逆に $T_{f=440}$ Kの計算結果は先端到 達距離が短く見積もられている.特に, $T_{f=380}$ Kと $T_{f=440$ Kの噴霧先端到達距離の差異が過大評価され

Fig. 7 Enlargement near nozzle orifice (t_{ini} =0.5 ms)

ている.これらは TAB モデルの改良による液滴径の 大粒径化と,減圧沸騰モデルによる気泡核生成・成長 の過大評価から生じたものである.今後さらに定性 的,定量的に噴霧先端到達距離を実験値と一致させる

Fig. 10 Vapor mass of n-tridecane

には,減圧沸騰モデル自体の最適化,および多成分燃料噴霧モデルとの適合性の検証が必要である.

4.3.蒸気量

図 9,10 にそれぞれ n-ペンタン, n-トリデカンの蒸 気量の時間変化を示す.*T*=320 K では,図6 でも明ら かなように両成分ともほとんど蒸発していない. *T*=380 K の場合では n-ペンタンが噴射量の約 50 %蒸 発するものの,n-トリデカンは *T*=320 K と同様にほと んど蒸発しない.図5 で示したように, n-ペンタンの 混合に伴い n-トリデカンは低沸点化されるため,二相 領域内では n-トリデカンの蒸発が促進されるものと

Fig. 11 Droplet diameter distribution ($t_{inf}=0.5$ ms)

考えられるが、T_f=320 K での小さい減圧度では n-トリ デカンが蒸発するまでには至らない.それに対して減 圧度が極端に大きい T_f=440 K では、噴射直後から噴 射期間を通して噴射された n-ペンタンの約 90 %, n-トリデカンの約 65 %が蒸発している.これは、ノズ ルオリフィス内で成長した気泡を持つ大粒径の液滴 が、噴射直後に減圧沸騰を起こし微粒化されるためで あり、この現象は噴射期間を通して継続されるものと 考えられる.

4.4.液滴粒径分布と平均粒径

図 11 に *t_{inj}*=0.5 ms における各初期燃料温度の液滴粒 径分布を示す.*T_j*=320 K では,30 µm 以下の液滴が存 在していないが,*T_j*=380 K になると小粒径側に移行 し,20-30 µm の液滴が全体の約 40 %を占める.しか し,両初期燃料温度では,100 µm 以上の液滴が存在 している.それに対して *T_j*=440 K における液滴径は すべて 30 µm 以下となり,10-20 µm の液滴が約 70 % を占めている.これらは図 12 に示す各初期燃料温度 におけるザウター平均粒径 (*D*₃₂)の時間変化からも 伺える.*T_j*=320,380 K の場合,*D*₃₂ はともに *t_{inj}*=0.4 ms 付近まで上昇し,その後 *T_j*=320 K ではほぼ一定値を 保ち,*T_j*=380 K では減少に転じる.この*D*₃₂ に変化が 生じる $t_{inj}=0.4 \text{ ms}$ は, $T_{j}=380 \text{ K}$ の先端到達距離が減少 する時間と一致しており,このことからも, $t_{inj}=0.4 \text{ ms}$ から減圧沸騰の効果が現れ始めることが予想される. また, $T_{j}=440 \text{ K}$ では他の初期燃料温度とはまったく異 なった傾向を示し,噴射直後から D_{32} は30 μ m 以下と なり,時間経過にしたがい緩やかに減少している.以 前行ったディーゼルエンジンを用いた実験では, $T_{j}=440 \text{ K}$ の場合にスモーク濃度が大幅に低減されて いる⁽¹¹⁾ことから,この $T_{j}=440 \text{ K}$ における微粒化向上 効果は本モデルで表現できているものと考えられる.

5.まとめ

以上の減圧沸騰噴霧に関する数値計算を行った結 果,以下の結論が得られた.

- (1) 実験および計算結果ともに,初期燃料温度 T_f=440
 K では,激しい減圧沸騰により噴霧幅は大幅に増 大する.
- (2) 計算結果において初期燃料温度の上昇により噴 霧先端到達距離が減少する点では,実験結果と一 致するものの,さらなるモデルの最適化が必要で ある.
- (3) 減圧度の大きい T_f=440 K では,他の初期燃料温度 と比べて,激しい減圧沸騰に伴う微粒化効果によ り各成分の蒸発率が極端に大きい.
- (4) *T_f*=320, 380 K の場合は 100 μm を越す大粒径の液 滴が存在するが, *T_f*=440 K では噴射直後から 30 μm 以下の小粒径の液滴のみとなる.

参考文献

- Oza, R. D. and Sinnamon, J. F., "An Experimental and Analytical Study of Flash-Boiling Fuel Injection", SAE Paper 830590, (1983).
- Reitz, R. D., "A Photographic Study of Flash-Boiling Atomization", Aerosol Science and Technology, Vol. 12, pp.561-569, (1990).
- (3) Amsden, A. A., "KIVA3V, Release 2, Improvement to KIVA3V", Los Alamos National Laboratory Report LA-13608-MS, (1999).
- (4) 千田, 錦織, 北條, 塚本, 藤本, "減圧沸騰噴霧の微 粒化・蒸発過程のモデリング(第2報, 微粒化と 蒸発過程のモデル解析)", 機論(B), Vol.60, No.578, pp.3556-3562, (1994).
- (5) Cole, R., Boiling Phenomena, Vol.1, Hemisphere Pub.

(Washington), p83, (1979).

- (6) Plesset, M. S., *Cavitation in Real Liquids*, Amer. Elsevrer Pub. (New York), p.1, (1964).
- (7) 井田, 杉谷, "圧力変化を受ける油中の気泡の運動 (第1報,単一気泡の実験解析)",機論(B), Vol.45, No.399, pp.1650-1657), (1979).
- (8) Kawano, D., Senda, J., Wada, Y., Fujimoto, H., Goto, Y., Odaka, M., Ishii, H. and Suzuki, H., "Numerical Simulation of Multicomponent Fuel Spray", SAE Paper 2003-01-1838, (2003).
- (9) Ely, J. F. et al., "NIST Thermophysical Properties of Hydrocarbon Mixture Database (SUPERTRAPP) Users' Guide", (1992).
- (10) Akihama, K., Fujikawa, T. and Hattori, Y., "Simultaneous Laser-Induced Fluorescence Measurements of In-Cylinder Fuel Behavior of Different Boiling Point Components", Proc. 15th Internal Combustion Engine Symposium (International), Seoul, pp.577-582, (1999).
- (11) Kawano, D., Senda, J., Wada, Y. and Fujimoto, H., "Fuel Design Concept for Low Emission in Engine Systems 4th Report : Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine", SAE Paper 2003-01-1038, (2003).