DMEを燃料とするクリーンディーゼルエンジンの研究開発(第3報)

- 噴射圧力の高圧化による性能向上 -

環境研究領域 安 秉一 佐藤 由雄 高栁 智光 早稲田大学 大聖 泰弘

1.まえがき

大都市地域の環境改善が緊急の課題となってお リ、大気汚染の主な原因であるディーゼルエンジン から排出される窒素酸化物(NO×)および微粒子 (PM)の同時低減が強く求められている。DME は天然 ガスや石炭からの大量生産が可能であり、黒煙が排 出しないことに加え、セタン価が高く、ディーゼル エンジンと同等の熱効率が期待できることから、デ ィーゼルエンジン用のクリーン燃料として注目さ れている。⁽¹⁾しかし、DME は軽油に比べて蒸発しや すく着火遅れが短く、発熱量が低い特性を有するた め、そうした燃料特性に適した噴射系及び燃焼系の 開発が必要であり、特に高速高負荷時における燃焼 改善が必要とされている。

そこで、本研究ではエンジン性能と排出ガスに及 ぼす噴射圧力の影響を明らかにするため、実機用の インジェクターを用いてエンジン試験を行うとと もに、高温高圧場に噴射される DME 噴霧の分散、蒸 発過程を高速度撮影し、DME エンジンの性能及び燃 焼特性との関係を調べたので報告する。

2.実験装置及び方法

2.1.コモンレール式燃料噴射装置

図1に実験装置の概略を示す。噴射系にはコモン レール式燃料噴射装置を使用した。図の左上部に示 すように、DME はモータ駆動の燃料噴射ポンプによ り加圧されコモンレール部において圧力調整され た後、インジェクターにより噴射される。表1に実 験に使用したエンジンおよび噴射系の諸元を示す。 このインジェクターは磁歪素子により作動制御さ れるパイロット弁により針弁に加わる燃料圧力を 制御する方式である。DME エンジンではディーゼル

と同等の出力を得るために約1.8倍の噴射量が必要 となる。DME の燃料特性を考慮して噴射期間を増や さずに噴射量を確保するため、DME の噴射ノズルの 総噴孔面積をディーゼルノズルより拡大した。

2.2.単気筒エンジン実験

エンジン実験にはベースエンジンとして表1に 示す排気量1053cm³の単気筒直噴式ディーゼルエン ジンを用い、シリンダヘットを改造してDME用のイ ンジェクターを取り付けた。燃料として工業用の DME(純度99.9wt%)を使用し、燃料噴射ポンプ及び ノズル部における潤滑を目的として、添加剤 (Lubrizol)を800ppmの割合で混合した。実験では DME タンクを温水で暖めてそのフィード圧力を約 1.0MPaに設定した。運転に当たっては、トルク一定 でエンジン回転速度を1280rpm、1920rpm、2560rpm、 2800rpm とした。また、噴射時期は各エンジン回転 数において、燃費が最良になる噴射タイミングを設

表1 エンジンの諸元		
	DME engine	Diesel engine
Туре	4-stroke	\leftarrow
Combustion	Direct injection	\leftarrow
Number of cylinder	1	\leftarrow
Bore & Stroke、 mm	108 × 115	\leftarrow
Displacement, cm ³	1053	\leftarrow
Compression ratio	18.1	\leftarrow

Common rail

20 - 35

 0.5×5

Common rail

60 - 110

 0.20×5

可視化実験条件 表 2

Injection pressure, MPa	20, 25, 30, 35	
Nozzle diameter, mm	0.5	
Number of hole	5	
Injection quentaty 、 mm ³	110	
Ambient density, kg/m ³	16	
Ambient temperature, K	300、500、700	

定した。排出ガスについては、CO を NDIR、NO×に ついては CLD、THC は HFID の各方式で測定した。

2.3. 噴射特性実験

Bo

Injector,

Injection pressure,

MPa

mm

図1の右下部には DME 噴霧の可視化装置を示す。 可視化装置は定容容器、燃料供給系、光学系、高速 度カメラおよび画像処理装置により構成される。定 容容器の両面には直径(120mm)×厚さ(50mm)の石英 ガラスを装着し、インジェクターからの噴霧を観察 できるようにした。観測部は非燃焼状態とするた め、窒素雰囲気とし、容器内の圧力は高圧のボンベ から供給した窒素を減圧レギュレータで調整した。 また、高温用のセラミックヒータを取り付けて、温 度制御装置により設定温度になるように調節した。

さらに、高速度カメラ (PhantomV7.0, Vision Research)を用い、10000fps(画像度 512×386)の 撮影速度で非燃焼噴霧のシュリーレン及び散乱光 撮影を行った。撮影した画像は、画像解析ソフト (DITECT 社)に入力し、噴霧特性解析を行った。その 撮影条件を表2に示す。可視化実験に使用したイン ジェクター、噴射圧力は単気筒エンジンと同条件で 行った。また、噴射率測定は図1の右上部に示す Zeuch の測定原理を応用した DME 用の噴射率計(小 野測器製)を用い、噴射率計の下流に設置した DME

図 2 DME 噴射特性

流量計(小野測器製)により実際の流量基準で噴射 率の値を補正する方法を採用した。(2) この際、エ ンジンシリンダー内圧力に等しい4MPa の背圧を設 定した。図2には噴射量及び噴射率測定結果を示す。 図から噴射圧力が高くなるほど噴射期間が短くな り、噴射率のピークは高くなる傾向が認められた。 本実験の測定範囲において、噴射量はほぼ直線性を 示した。

3.実験結果および考察

コモンレール式噴射装置を用いた単気筒エンジ ンにおいて、エネルギー消費率に対する噴射圧力の 影響を調べた結果を図3に示す。噴射圧力の上昇に 伴い、エンジン回転速度によらずエネルギー消費率 が減少する。特に、高回転、高負荷においてエネル ギー消費率の改善が顕著になる傾向がある。また、 同エンジンにディーゼルコモンレール噴射装置を 用いて、軽油運転を行った実験結果と比較すると、

図3 エネルギー消費率に対する噴射圧力の影響

DME 運転時には高回転・高負荷において噴射圧力が 高いほど、エネルギー消費率が軽油運転時に近づく 結果が得られた。図4は各噴射圧力における燃焼解 析結果を示す。噴射圧力を高くするとシリンダー内 の最高圧力が増加し、予混合燃焼における熱発生率 が増加する。これは燃料噴霧の微粒化による蒸発と 空気導入が促進され、活発な燃焼が行われたことを 示す。図5には燃焼特性値に及ぼす噴射圧力の影響 を示す。図から噴射圧力の上昇に伴い、着火遅れ期 間の変化は少ないが、燃焼期間が大幅に短縮され、 また、噴射期間も短くなる傾向を示した。この結果 から、噴射圧力の上昇による混合気形成の促進と噴

図5 燃焼特性値に及ぼす噴射圧力の影響

図 6 噴射圧力の変化に対する散乱および シュリーレン画像

射期間短縮化の両方効果により燃焼が改善される ことになる。次に、単気筒エンジンの圧縮時の温度、 圧力を模擬して、燃焼に至るまでのDME 噴霧の微粒 化、蒸発過程を調べた。ここでは、5 噴孔の内2 噴 孔の噴霧のみを可視化した。図 6 は雰囲気温度 700K、雰囲気密度 16kg/m³の場合、噴射圧力の変化 に対する散乱およびシュリーレン画像を示す。散乱 光の撮影結果から噴射圧力の上昇に伴い、液滴の到 達距離が長くなる傾向が認められた。実機の圧縮時 に近い雰囲気条件(P_a=3.23MPa、T_a=700K)において も、微粒化された液滴が周囲の熱を受けて蒸発しな がらも、噴霧先端まで液滴が到達することで軽油噴 霧と同様の挙動を示した。また、シュリーレン撮影 の結果から、散乱撮影結果と同様に、噴射圧力が高

図7 着火時における燃焼室と噴霧の関係(模擬図)

くなるほど、液滴と蒸気を含んだ噴霧の到達距離が 長くなり、液滴の蒸発が促進されることで噴霧の外 周部において乱れが大きい蒸気部が広がる傾向が 見られた。本実験の最も噴射圧力が高い35MPaの場 合においで、噴霧同士の干渉もなく液滴の微粒化及 び蒸発が活発になることを確認した。図7は着火時 における燃焼室と噴霧の位置関係の模擬図を示す。 DME 噴霧は着火時 (-3degATDC)において、分散しな がらもキャビティーの中に納まる傾向を示した。

図8にはDME エンジンとベースディーゼルエンジ ンの全負荷性能を比較した結果を示す。DME エンジ ン実験は排気温度上限を700 として行った結果で ある。噴射圧力が高くなるほどエンジン出力は増加 し、低回転時ではディーゼルの場合、スモークリミ ットにより低くなっており、DME の場合は煙が発生 しないことから十分トルクアップが可能である。ま た、高回転の噴射圧力 35MPa の場合は、エネルギー 消費率はやや高くなるものの、ベースディーゼルと 同等の出力を得ることができた。今後、更なる高圧 噴射により、性能向上が可能であると思われるが、 同時に噴射圧力に適した燃焼室形状の最適化が必 要である。

4.まとめ

コモンレール式噴射装置を用いて単気筒 DME 圧縮 着火エンジンの実験を行うとともに、散乱光とシュ リーレン法により、高温高圧場での DME 噴霧の分散、 蒸発過程を高速度撮影し、噴射圧力とエンジン性能

図 8 DME エンジンとペースディーゼルエンジン との全負荷性能比較

および燃焼特性との関係を調べた結果、次のような 知見を得た。

(1)噴射圧力 35MPa の場合、エネルギー消費率は やや高いものの、ディーゼルと同等の出力を得る。 (2)噴射圧力が高くなるほど、予混合燃焼が活発 になり燃焼期間が短縮する。NOx 排出量は増加する が、高速高負荷域においてもエネルギー消費率は向 上する。

(3)噴霧の撮影結果から噴射圧力 35MPa までは、 噴霧同士の干渉もなく液滴の微粒化および蒸発が 活発になる。

(4)DME 噴霧は圧縮上死点近傍相当の高温高圧場に おいて、微粒化された液滴が周囲の熱を受けて蒸発 しながらも、噴霧先端まで液滴が到達し、軽油噴霧 と同様の挙動を示す。

最後に、本実験に協力を頂いた交通研の小林 啓樹氏に心から感謝の意を表す次第である。

参考文献

(1)若井謙介、他3名、代替ディーゼル燃料としての Dimethyl Ether(DME)の噴霧特性に関する研究、自動車技術会講演前刷集、No.976-17(1997)
(2) Tadashi IKEDA et al., Measurement of Rate of Multiple Fuel Injection with Diesel Fuel and DME, JSAE Paper 2001-01-0527