動揺減衰装置装着時の索道搬器の特性解析

交通システム部

佐藤 久雄

1.はじめに

架空されたロープに搬器を懸垂させて輸送を行 う、いわゆる索道システムは、急勾配に強いことや 支柱間の線路長を長く設定できることなどの理由に より、山間部等において旅客の輸送用に多く使用さ れている。

この索道システムにおいては、風等による過大な 搬器動揺は、支柱との衝突等の大事故に結び付く恐 れがあり、輸送の安全性及び信頼性をより高めるた めには、風等による搬器の動揺の低減を図ることが 極めて重要である。

風等による搬器の動揺を低減する索道用の減衰装 置としては、電源が不要なパッシブ方式の装置がよ り現実的と考えられ、質量しゅう動式の装置が検討 され実用化されている⁽¹⁾⁽²⁾。この方式の装置は1 台で1方向のみに有効であり、2方向に機能させる ためには2台必要になる。

一方、筆者が提案している球転動式の動揺減衰装 置⁽³⁾⁽⁴⁾は、1台で1方向のみならず、全方向に 機能させることも可能な装置である。今回、この装 置を索道搬器に装着する場合における調整方法とそ の効果に関する詳細な検討を行ったので、その結果 について報告する。

2.球転動式動揺減衰装置について

球転動式動揺減衰装置は、Fig.1 に示すようなものであり、転道球の慣性力を反力として、搬器の動揺を低減しようとするのもである。

その特徴としては、

(1)球転動式であるため、構造がシンプルになる とともに、可動質量の転がりが良く、動きがスムー ズとなる。

(2)1台で1方向のみならず、左右方向および前
 後方向を含む全方向に機能させることも可能である。

(3)転道球の軌道を半球状にした場合、そのケー シングは空力付加物としてウイングあるいはフェア

(b) Whole direction model

Fig.1 Ball rolling type damping equipment

リングの効果(5)を持たせることが期待できる。 (4)減衰性能を上げるために質量比を増やしたい 場合は、転動球の数を増やすことで対応できる。 などがあげられる。

なお、この方式の装置の固有振動数 は、球の中 心が半径 の円軌道上を転道する場合、

 $\omega^2 = \frac{5}{7} \frac{g}{\ell}$ のように求められる。

2.1. 解析モデルと周波数応答関数

Fig.2 に示すように、搬器を1自由度の振り子と し、減衰は無視する。搬器の質量を m_1 、支点から 重心までの距離を $_1$ 、角変位を $_1$ とする。減衰装 置は、半径 r の球が転道する方式のものであり、球 の回転角をとする。球の中心は、半径 $_2$ の円軌 道上を動くものとし、その支点は、主系の支点の上 方にあるものとする。球の質量を m_2 、減衰係数 を c、角変位を $_2$ とする。また、 m_1 に働く外力を Pe^{int} とする。球の慣性モーメントは $I = (2/5)r^2m_2$ であること、および、球がすべることなく転がる時 には、 $\ell_2\dot{\theta}_2 = r\dot{\theta}$ であることを考慮してラグラン ジェの方程式を求め、さらに線形化すると、運動方

Fig.2 Analysis model

程式は次のように求められる。

$$(m_{1}\ell_{1}^{2} + m_{2}\ell_{2}^{2} + m_{2}\ell^{2} - 2m_{2}\ell\ell_{2})\ddot{\theta}_{1}$$

$$+(m_{2}\ell_{2}^{2} - m_{2}\ell\ell_{2})\ddot{\theta}_{2} + (m_{1}\ell_{1} + m_{2}\ell_{2} - m_{2}\ell)g\theta_{1}$$

$$+m_{2}\ell_{2}g\theta_{2} = P\ell_{1}e^{iwt}$$

$$(m_{2}\ell_{2}^{2} - m_{2}\ell\ell_{2})\ddot{\theta}_{1} + (7/5)m_{2}\ell_{2}^{2}\ddot{\theta}_{2} + c\ell_{2}^{2}\dot{\theta}_{2}$$

$$+m_{2}g\ell_{2}\theta_{1} + m_{2}g\ell_{2}\theta_{2} = 0$$

ここで、一般性を持たせるため、次の記号

$$R = m_2/m_1, \qquad \gamma = (\ell_2 - \ell)/\ell_1, \ \omega_1^2 = g/\ell_1,$$
$$\omega_2^2 = (5/7)(g/\ell_2), \ \varsigma = c/(2m_2\omega_1), \ v = \omega_2/\omega_1,$$
$$\lambda = \omega/\omega_1, \qquad \Theta_{st} = P/(m_1g)$$

を導入し、(2)(3)式を無次元化するとともに、 角変位を複素数で表示して解くと、主系の角変位振 幅比の周波数応答関数は、最終的に次のように求め られる。

$$K_{1}(\lambda) = \sqrt{\frac{(F_{6}\lambda^{2} + F_{7})^{2} + F_{8}^{2}(\varsigma\lambda)^{2}}{(F_{1}\lambda^{4} + F_{2}\lambda^{2} + F_{3})^{2} + (F_{4}\lambda^{2} + F_{5})^{2}(\varsigma\lambda)^{2}}}$$
(5)
$$\Box \Box \Box \Box$$

$$\begin{split} F_1 &= 1.4 + 0.4 R \gamma^2 \\ F_2 &= -1.4 v^2 (1 + R \gamma^2) - 1.4 + 0.6 R \gamma \\ F_3 &= 1.4 (1 + R \gamma) v^2 - R \\ F_4 &= -2 (1 + R \gamma^2) \\ F_5 &= 2 (1 + R \gamma) \\ F_6 &= -1.4 \\ F_7 &= 1.4 v^2 \\ F_8 &= 2 \\ \\ 以上のように、角変位振幅比に関係するパラ \end{split}$$

ターは、R, , , の4項目である。この4項目 を設計パラメーターとして解析を行う。

2.2. 最良調整

(5)式は、主系の角変位振幅比の周波数応答を 表しており、2自由度振動系として2つの共振点を 持つ。また、この振幅比曲線は、減衰係数比の値 に無関係に2つの定点P、Qを通るので、この2定 点の高さを等しくし、その付近を極大とする条件を 最良調整条件と定めると、その条件を満たすべき各 パラメータ間の関係が求められる⁽⁶⁾。

まず、定点を通るという条件とP、Q点の高さを 等しくする条件より、

 $2F_1F_5F_8 = F_4(F_2F_8 + F_4F_7 - F_5F_6)$

この式に式(6)を代入することにより、最良となる付加系と主系の固有振動数比 *v_{ont} が*求められる。

$$v_{opt} = \sqrt{\frac{11.2 + 19.2\gamma R + 3.2\gamma^2 R + 11.2\gamma^3 R^2}{11.2 + 22.4\gamma^2 R + 11.2\gamma^4 R^2}}$$

この時の2定点P、Qにおける強制振動数比 λ_p (2) λ_o は、次のように求められる。

$$\begin{cases} \lambda_{p}^{2} \\ \lambda_{Q}^{2} \end{cases} = \begin{cases} \frac{-\xi_{1} \mp \sqrt{\xi_{1}^{2} - 4\xi_{2}}}{2} \\ \\ \frac{\xi_{1}}{2} \end{cases} \\ \\ \xi_{1} = \frac{F_{4}F_{7} + F_{5}F_{6} + F_{2}F_{8}}{F_{1}F_{8} + F_{4}F_{6}} \\ \\ \xi_{2} = \frac{F_{3}F_{8} + F_{5}F_{7}}{F_{1}F_{8} + F_{4}F_{6}} \end{cases}$$
(3)

最良減衰は、式(5)の二乗を²によって微分 し、

$$\frac{\partial(K_1^2)}{\partial(\lambda^2)} = 0$$

この結果を に関して整理し、4次の多項式を解く と、²が求められる。この結果に、式(9)で得 られた λ_p^2 、 λ_q^2 及び式(8)で得られた V_{opt} を代入 すると、 ς_P^2 、 ς_q^2 が求められる。最良減衰係数比を ς_{opt} とすると、 ς_{opt}^2 は、 ς_P^2 と ς_q^2 の平均をとることに すると、

$$\varsigma_{opt}^{2} = \frac{\varsigma_{P}^{2} + \varsigma_{Q}^{2}}{2}$$

と求められる。

式(8)および式(11)によって最良同調調整 (6) された時、P、Q点での主系の角変位振幅比(最大 振幅比)は、次のように求められる。

$$(K_1)_{\text{max}} = \left\{ \frac{F_8}{F_4 \lambda_p^2 + F_5} \right\}_{V=V_{opt}}$$

3.解析結果

3.1. 最良調整図表

質量比Rを横軸にした場合の各パラメーターの最 良調整図表をFig.3 に、取り付け位置比 を横軸に した場合の各パラメーターの最良調整図表をFig.4

Fig.3 Best adjustment charts based on mass ratio "R"

に示す。

Fig.3 および Fig.4 に、わける各図表は、式(8) (11)(12)を用いて作成された最良固有振動 数比 v_{opt} 、最良減衰係数は $_{opt}$ 、及び最良調整時の 最大振幅比 $(K_1)_{max}$ を示す。

各図とも、 = 1 の時は、付加質量を主系の重 心位置に取り付けることを示しており、 < 1の時 は、付加質量を主系の重心位置より上方に、 > 1 の時は、重心位置より下方に取り付けることを示し ている。

それぞれの図において、R、を指定すること

Fig.4 Best adjustment charts based on position ratio "

によって、最良調整に必要な 及び を読みとるこ とができ、更に、最良調整時の $(K_1)_{max}$ の値を読みと ることができる。

これらの図を見ると、主系の最大角変位振幅比 は、付加質量の取り付け位置を主系の重心位置より 上方あるいは下方に離す程小さくなり、装置の制振 性能が向上し、重心位置では全く効果がないことが わかる。更に、主系に対する付加系の質量比が大き い程、装置の制振性能が向上し、また、質量比の増 加に対する制振性能の向上効果は、質量比が小さい 時程顕著であることがわかる。

各パラメーターの調整値の選定に際しては、実際 の索道システムでは、線路上の構造物、あるいは停 留場内の設備等との位置関係から種々の制約条件が 生じるため、慎重に調整値を選ぶ必要があると考え られる。

3.2. 周波数応答

最良調整された減衰装置を装着した系の周波数応 答をFig.5 に示す。減衰装置を装着しない場合の角 変位振幅比の最大値は無限に大きくなるが、減衰装 置を装着した場合の角変位振幅比の最大値は、質量 比R = 0.05、取り付け位置比 = 0.5 の場合は15、 R = 0.1、 = 0.5 の場合は10、R = 0.1、 = 0.25 の場合は7 になる。従って、減衰装置は十分効 果があり、制振効果に対して、質量比Rおよび取り 付け位置比 の影響が顕著であることがわかる。

3.3. 過渡応答

最良調整された減衰装置を装着した系の過渡応答 シミュレーション結果を示す。

初期変位に対する時間応答を Fig.6 に示す。質量 比R = 0.1、取り付け位置比 = 0.5 の場合には、 初期角約6度が3周期程で半減し、R = 0.1、 = 0.25 の場合には、2周期程で半減していることが わかる。

また、ランダム風に対する時間応答を Fig.7 に示 す。 8 人乗りのゴンドラリフト (m₁ = 660kg、

₁ = 3.19m)を想定し、搬器横面積を 3.23 m²、 搬器横方向空力係数を 0.57 とした。風速について は、風速の確率密度関数は正規分布するとみなして よい⁽⁷⁾ので、風速の平均値が 15m/s、標準偏差 が 2.194m/s の正規分布の確率密度関数に従う乱数 を発生させ、これを横方向風速とした時の応答を求 めた。減衰装置は十分効果があることがわかる。

Fig.5 Frequency response of primary system

Fig.6 Time response to initial displacement

Fig.7 Time response to random wind

4.実験

減衰装置を装着した場合の効果の確認をするため に、模型実験を行った。この時の実験系統図を Fig.8 に示す。 $m_1 = 4.5$ kg、 $_1 = 0.48$ m、 $m_2 = 0.45$ kg(0.225kg/個×2個) $_2 = 0.342$ mである。

初期変位に対する時間応答結果を Fig.9 に示す。 実験結果を実線で示す。質量比 R = 0.1、取り付け 位置比 = 0.5 の場合には、初期角が 3 周期程で半 減していることがわかる。また、シミュレーション 値を破線で示す。シミュレーション値は実験値と良 く合っていることがわかる。

Fig.9 Experiment and simulation in time response to initial displacement

5.あとがき

風等による索道搬器の動揺の低減を目的として、 筆者が提案している球転動式の動揺減衰装置を搬器 に装着する場合の調整方法とその効果に関する検討 を行った結果をまとめると、次のとおりである。 (1)球転動式の装置のパラメーターの調整図表の 作成を行い、質量比Rを横軸にした場合および取り 付け位置比 を横軸にした場合について、最良固有 振動数比*v_{opt}*、最良減衰係数比*_{opt}、および*最良調 整時の最大振幅比(*K*₁)_{max}との関係を明らかにした。 (2)付加質量の取り付け位置は、装置の制振性能 を決定する上で非常に重要である。付加質量の取り 付け位置を主系の重心位置より上方あるいは下方に 離す程、装置の制振性能は向上する。

(3) 主系の質量に対する付加質量の割合(質量比) が大きい程、装置の制振性能は向上する。また、質 量比の増加に対する制振性能の向上効果は、質量比 が小さい時程顕著である。

(4)最良調整された減衰装置を装着した場合の効 果について、主系の周波数応答、初期変位に対する 時間応答、ランダム風に対する時間応答についてシ ミュレーションを行い、減衰装置は十分効果がある ことを確認した。

(5)模型実験を行い、減衰装置を装着した場合の 効果を確認した。初期変位に対する時間応答結果で は、質量比R=0.1、取り付け位置比 =0.5の場 合には、初期角が3周期程で半減することが認めら れた。実験値とシミュレーション値との比較検討を 行い、シミュレーション値は実験値に良く合ってい ることを確認した。

(参考文献)

(1) 松久他:「索道搬器の動吸振器による制振」、 日本機械学会論文集、59巻、562号、(1993-6) (2) 岩崎他:「ゴンドラ・リフト用制振装置の開 発」、石川島播磨技法、Vol.38、No.3、1998 (3) 佐藤:「索道用傾斜振り子軌道型球転動式減衰 装置の提案と検討」、第29回交通安全公害研究所 研究発表会講演概要、1999.11 (4) H. Sato : "Swing Reduction of Ropeway Carriers by Means of Inclined Pendulum Trajectory and Ball Rolling Type Damping Equipment", ASME International Mechanical Engineering Congress & Exposition, 2000.11 (5) 佐藤他:「索道搬器の耐風性向上に関する風洞 実験」、鉄道技術連合シンポジウム (J-RAIL'01)、 2001.12 (6) Den Hartog : "Mechanical Vibrations", (1950), 122, 103, McGraw-Hill (7) 佐藤他:「索道施設における風特性と搬器動揺 の調査解析および搬器の風応答シミュレーション」 日本機械学会 Dynamics and Design Conference、

2002.9