車両周囲温度湿度環境をコントロールする 次世代シャシダイナモ設備

環境研究部

充部

※川原田光典 奥井 伸宜

1. はじめに

燃費及び排出ガス試験に一般的に用いられるシャ シダイナモでは、車輪をローラ上に設置するよう車両 を固定し、あらかじめ定められた速度パターンを走行 する。現在の試験法は Worldwide harmonized Light vehicle Test Procedure : WLTP (国際調和排出ガス・ 燃費試験法)に基づく WLTC の速度パターンを用い る方法である。WLTC モード (Class 3b)の速度パタ ーンを図1に示す。Low (L)、Medium (M)、High (H)、Ex-High (ExH) の4フェーズ (国内認証試験 では L、M、H の3フェーズ)があり、それらを連続 で走行する。認証試験の際の環境条件は、温度 23℃及 び湿度 50%RH (Relative Humidity : 相対湿度) と 規定されている。

ここで他の車両試験法の温度湿度に着目すると、国 連規則 UNR83-7 では 23℃に加えて低温環境(-7℃) でのシャシダイナモ試験法が定められている。さら に、国内の路上走行試験法(道路運送車両の保安基準 第 31 条、細目告示別添 119)で規定されている温度 域は-2℃から 38℃であるうえ、湿度範囲については規 定されていないなど一部の試験条件が明確になって いない。また、電気自動車等の電動車が搭載するバッ テリは充放電時の周囲温度により性能劣化の進行度 合いが異なる。電動車においてバッテリの性能劣化は 航続距離などに直結するため、実走行時の環境及び充 放電を想定した性能評価試験が必要である。

このような状況に対応するには、車両周囲の温度及 び湿度のコントロールが可能なシャシダイナモ設備 の導入が不可欠である。そこで交通安全環境研究所で は、幅広く温度湿度を変化させることができる環境試 験室を新設するとともに既存設備の改修を行い、「次 世代シャシダイナモ設備」として 2021 年に完成させ た。本稿では、次世代シャシダイナモ設備を紹介し、 その後ディーゼル乗用車(ポスト新長期規制適合)を 用いた実験で得られた結果について報告する。

図1 WLTCモード (Class 3b)

 図2 次世代シャシダイナモ設備

 表1 温度湿度制御範囲

設定可能温度域	-7	~	38	°C	
湿度制御可能温度域	5	~	28	°C	

2. 実験設備

図2に次世代シャシダイナモ設備での実験状況を 示す。車体周辺の床部分がシャシダイナモであり、周 囲の銀色の壁及び天井は断熱パネルである。車両前方 に車速風ファンが設置されている。その上方に空調機 の吹き出し口がある。

表1に設定可能な温度湿度域を示す。温度設定が可 能な範囲は-7 から 38℃であるが、そのうち湿度制御 可能な温度範囲は 5 から 28℃である。なお、5 から 28℃のいずれの温度においても 50%RH に制御する

ことが可能である。設定可能な湿度の範囲は設定温度 に依存し、23℃付近では 30%RH から 70%RH まで の広い範囲で制御可能である。

3. 実験結果

様々な温度湿度条件で図1に示したWLTCモード の走行を行い、排出ガスに及ぼす影響を調べた。温度 変化については各温度でソーク後に暖機運転なしで 計測を開始する Cold 条件と、湿度変化については各 条件でWLTCモードの走行を1回行い10分後に再 度走行を開始する Hot条件において計測を行った。な お、計測は車載式排出ガス分析計で行った。

図3にCold条件で行った温度変化の結果を示す。 LMH 及びLMHExH は、それぞれ3フェーズ及び4フェーズ全体の結果を示す。CO2排出量の比較においては-7℃における排出量が全フェーズを通して高かった。NOx についてはLowフェーズで-7℃における排出量が高い値を示した。低温環境で排出ガス特性が悪化することは、他の研究者ら¹⁾によって報告されており、同様の傾向である。次にHot条件で行った湿度変化の結果を図4に示す。CO2排出量についてはほぼ

同じ値を示し、NOx 排出量では違いが見られた。詳細 については今後サンプル数を増やして検討を進める。

4. まとめ

車両周囲の温度湿度環境をコントロール可能な次 世代シャシダイナモ設備を導入し、様々な温度湿度条 件でWLTCモード走行試験を行った。その結果、温 度湿度が排出ガス性能に影響を与えることが確認で きた。今後は幅広い温度湿度範囲で走行試験を実施 し、温度湿度が排出ガス性能に与える影響の詳細を検 討する。さらに今回使用した内燃機関を動力源とする 従来車のみならず、今後普及が進むと見込まれている 電動車を用いた試験を行い、電動車の特性を考慮した 新たな評価法などの検討も進める。これらを通じて、 将来の基準策定の一助となる知見を得る。

参考文献

 Jerzy Merkisz et al., "A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car", SAE Technical Paper 2020-01-2217, 2020