①電気駆動系自動車におけるエネルギ回生制御の実態把握と その最適化について

環境研究領域 ※奥井 伸宜 新国 哲也 河合 英直

1. はじめに

温室効果ガスの一つに二酸化炭素(以下、CO₂)が 挙げられ、重量車からのCO₂排出量は、日本全体の約 5%を占めている¹⁾。当研究所では、交通環境の改善・ 保全に応えるべく、重量車からのCO₂排出量の削減に 取り組んでいる。その一手法として重量車の電気駆動 化が挙げられ、ハイブリッド自動車(以下、HEV)お よび電気自動車(以下、EV)の技術を活用した高効率 パワートレインシステムの検討を行っている。

電気駆動車の高効率化を支える主な要因としては、 アイドルストップ、モータアシストおよび回生制動が 挙げられる。特に、車両(エンジン車)に投入された エネルギの約 25%が制動時に浪費されている²⁾ことか ら、この部分における効率的なエネルギ回収が車両高 効率化のための重要な要素となってくる。

本報では、重量車の電気駆動化を検討する上で、車 両のエネルギ収支が計算できる簡易シミュレーショ ンを作成した。今回は、現在市販されている EV の走 行実験より取得した情報を基にモデル検証を行い、こ れを基に電気駆動車(乗用車)のエネルギ回生向上に 関するケーススタディを行った。さらに、検討した回 生方法を HEV 重量車に適用し、システムの最適化を図 る等の目的で現在構築している「台上ハイブリッド試

Vehicle weight	[kg]	1,100
Motor	Туре	Permanent magnet synchronous motor
	Max. output [kW/min-1]	47 / 3,000 ~ 6,000
	Max. torque [Nm/min-1]	180 / 0 ~ 2,000
	Max. speed [min-1]	8,500
Drive battery	Туре	Lithium-ion cells
	Rated voltage [V]	330
	Rated capacity [kWh]	16
Control system		Inverter control
Driving method		Rear-wheel drive

Table.1 Vehicle specifications 4)

験装置」について紹介する。

2. 試験車両 および 試験方法

供試車両として、市販されている EV を使用した。 車両諸元を表1に示す。この EV の特徴としては、モ ータとモータ制御機能および電力変換機能(インバー タ)の最適制御によりシステム効率を 90%以上に高め、 リチウムイオンバッテリと組み合わせたことで日常 生活に支障のない航続距離 160km を確保し(一般ユー ザの一日あたりの平均走行距離;28km)、ガソリン車 と遜色ない走行性能にまで仕上げている³⁾。

供試車両の回生制動の把握およびシミュレーショ ン結果との比較を行うため、テストコースおよび一般 道路(市街地)を使用し、走行中の電流、電圧、車速、 GPS 信号およびブレーキ踏力信号等のデータを取得し た。ここで、取得した電流、電圧データは、バッテリ 端子より計測を行っている。

3. 電気駆動車のモデル化

車両走行時のエネルギの出入りを把握するため、簡 易シミュレーションを作成した。

3.1.車両モデル

車両が前後に動く際には、一般的な車両の運動方程 式が成り立つ。それに加え、本報では、車両の加減速 時の荷重変化を考慮したモデルを作成した⁵⁾。

3. 2. ブレーキモデル

電気駆動車の制動時には、機械ブレーキと回生ブレ ーキの2種類のブレーキが作用し車両(車輪)が停止 するため、これを反映させたモデルを作成した。

なお、回生ブレーキは5章で述べるが、回生モータ および機械ブレーキの配置を、車両の全輪 or 前輪の み or 後輪のみとする組み合わせにより回生電力に差 を生じる。また、諸元より求めた理論制動力配分を本 計算での制動力配分とし、固定値として使用した。

Fig.1 Test course (deceleration : 40km/h)

4. 車両モデル および ブレーキモデルの検証

作成したシミュレーションモデルの検証を行うた めに、テストコースおよび実際の路上で走行した実験 データとの比較を行った。ここで、今回比較する力行 /回生電力は、上述したようにバッテリ電力の収支で あるため、本シミュレーションにおいても、減速機等 の機械損失およびモータ、インバータ等の電機損失を 考慮した。

4. 1. テストコース走行

モデル検証を行うためテストコースにおいて、ブレ ーキ開始速度域における本供試車両の力行/回生電力 を取得した。結果を図1に示す。図1(a)は目標減速 開始速度(40km/h)に達したときにシフトをDレンジ に固定したままアクセル OFF で減速させ、図1(b)は 同様にアクセル OFF と同時に機械ブレーキ ON(減速 度:1.7m/s²)とし、惰性走行しないよう留意した。

本供試車両は、ブレーキ協調回生を行っていない⁶⁾ ため、機械ブレーキ 0N/0FF に関わらず、減速開始直 後にはほぼ同等の回生電力を発生していることがわ かる。シミュレーションのバッテリ電力結果に注目す ると、実験結果と同等の傾向を示した。このとき、機 械ブレーキ 0N 時には、図1 (b) 上段に示すように車 両減速に伴う前後輪の質量変化が計算できた。また、 減速中の低速度域 (15km/h 以下) においては実験と計 算結果とに差を生じた。これは、減速中の低速度域に おいて「モータ回生を停止し、機械ブレーキのみで停 止する」という車両メーカのブレーキ制御の考え方が 反映していると思われる。本モデルにおいては全速度 域フル回生を前提とした高回生車の検討を行う目的 があるため、このロジックは本モデルには反映させて いない。

4.2.市街地走行

前節では走行状態が安定しているテストコースで の走行実験によりモデル検証を行ったが、実際の路上 走行では、惰性のみの減速や惰性+機械&回生ブレー キを併用した減速など、減速状況が複合的に変化す る。それに加え、車両加減速に伴う荷重が時々刻々変 化する。このような各種状態が複合的に変化する走行 時のモデル検証も必要であると考え、供試車両で一般 的な市街地として【交通安全環境研究所→JR 三鷹駅→ 交通安全環境研究所】を走行し、実験結果との比較を 行った。

比較結果を図2に示す。走行中のバッテリ電力状況 を比較すると、加速時/減速時においてもほぼ実験結 果をトレースすることがわかった。停止中において は、実験値は若干のバッテリ消費を示しており、これ は車両の電装系、補機類によるものと考えられる。

以上より、再現性がより複雑となる実路走行におい ても、作成した簡易モデルでエネルギ収支の計算が可 能であることが確認できた。

Fig.2 On road test : <u>National Traffic Safety and Environment Laboratory</u> \rightarrow JR-Mitaka ST. \rightarrow NTSEL)

Fig.3 Regenerative & Mechanical Brake layout

5. 高効率電気駆動車の検討

前章で、本シミュレーションモデルのエネルギ収支 に再現性があることを確認した。以下で、高効率電気 駆動車のレイアウト検討を進める。

機械ブレーキと回生ブレーキの配置および組み合 わせにより、回生電力量は大きく影響を受ける。そこ で、考えられる車両レイアウト(機械ブレーキ、回生 ブレーキの配置および組み合わせ)を以下に列挙し、 図3に示す。ここで、供試車両のレイアウトは、下記 のレイアウト③に該当する。

- ① 全輪 回生ブレーキのみ
- ②【Fr】機械&回生ブレーキ
 +【Rr】機械ブレーキのみ
- ③【Fr】機械ブレーキのみ
 +【Rr】機械&回生ブレーキ
- ④ 【Fr】回生ブレーキのみ
 + 【Rr】機械ブレーキのみ
- ⑤ 【Fr】機械ブレーキのみ
 - + 【Rr】 回生ブレーキのみ

この5パターンについて、作成したシミュレーショ ンを用い、機械&回生ブレーキのレイアウト検討を行 った。なお、今回の走行パターンは4.2.節で使用した 市街地走行データを用い、各レイアウトの制動力配 分、機械ブレーキカは同一と仮定し計算した。ここで、 今計算で指標とする回生効率は、次式により求めた。

回生効率[%] = 実回生電力量[kWh]

/ 理論回生電力量[kWh]×100 (1) 図4に、本計算条件下における積算回生電力量を棒 グラフにて表すが、レイアウト①の回生電力量が一番 多い結果となった。機械ブレーキを使用しないこのレ イアウトが理論回生電力量にあたり、供試車両である レイアウト③の回生効率に着目すると、理論回生電力 量の約5割を回生していることが分かる。結果として、

Fig.4 Simulation result of Brake layout

Fig.5 Brake layout evaluation by simulation

前輪側に回生モータを配置することで、より多くの回 生エネルギを吸収できる事がわかり、合理的な結果が 得られた。このとき、図5上段に走行中の車両質量の 変化を示すが、走行時に前後輪にかかる車両質量が 時々刻々変化する様子が計算により確認できた。

ここまで、本供試車両での高効率エネルギ回生の検 討を行った。今後は、重量車に展開を行う予定である。

6. 台上ハイブリッド試験装置

最終的に我々が検討している電気駆動車は、都市間 を移動する大型重量車であり、電池の重量およびサイ ズの問題により航続距離および積載量等が制限され てしまうため、フル EV 化は困難と思われる。そこで、 HEV 技術の活用を検討する必要が出てくるが、エンジ ンとモータの組み合わせによりその要素が複雑とな り、車両走行全域における簡易シミュレーションでの 検討は困難になる。

検討予定の電気駆動重量車の高効率回生方法を HEV 重量車に適用するとともに、車両システム全体の最適 化を図る目的で現在構築している「台上ハイブリッド 試験装置」について、以下に紹介する。

6.1.試験装置の全体概要

図6に本試験装置の最終構成例であるシリーズ・パ ラレル式の試験装置システム構成図を、表2にこの試

Fig.6 Virtual hybrid vehicle system (Series/parallel hybrid vehicle)

験装置の主要構成機器を示す。

通常、HEVでは、エンジンとモータが原動機となる ため、これらの機械出力をシリーズもしくはパラレル に接続する必要がある。しかし、本試験装置は、それ ぞれのダイナモメータの連結をソフトウェア上で行 うことにより、車両重量、パワーバランス、バッテリ 能力および動力伝達機構などを計算モデルにて自由 に構成できるため、実機を試作する必要が無い。

本システムの概念を以下に記す。運転手を代行する ドライバモデルからアクセル開度情報を受け、車載 CPUモデルがエンジン用 ECU および駆動モータ用イン バータへ指令を行う。車両モデルが走行時の負荷を演 算し、各ダイナモメータはエンジンおよび駆動モータ ヘ与えるべき負荷指令を行う。一方、回生時の情報は 回生モデルで演算され、車載 CPUモデルと連携して充 放電装置へ充電情報を与え、バッテリに給電する。以 上より、走行中のエンジン、駆動モータ、バッテリの

m 11 o	E	· · ·
Table 2	Eaunment	contigurations
10010.2	Liquipinoin	configurations

1. Dynamometer, Dynamometer control system type) Flex-Dynamometer TYPE-I G250 (MEIDENSHA CORPORATION) spec) Rated torque;500Nm, Max speed;12,000rpm
2. Measurement control system type) FAMS8000 (ONO SOKKI Co.,Ltd.) spec) VME control bus, Manual control panel, Data analysis software
3. DSP system, DSP control software
type) High-speed operational equipment (dSPACE GmbH) version : Control Desk Release 5.4
type) Software (MathWorks Inc.)
4. Simulation model Running on MATLAB model
5. Motor (M/G), Inverter type) YZ901-M1 (Sawafuji Electric Co., Ltd.) spec) Rated torque; 350Nm, Rated power(max); 30kW, Max speed; 7500rpm
6. DC power-supply system spec) DC50V – DC500V, 500A (MEIDENSHA CORPORATION)
7. Electrical energy meter type) 3193 (HIOKI E.E. CORPORATION.)

状態をリアルタイムに観察することができる。

上記に加え、再現性が確保しにくい部分については モデル化することにより対応できるため、研究対象と する現象の再現性を確保し、詳細に解析する事も可能 にしている。

6. 2. 進捗状況

今年度は、パラレルハイブリッドシステムの構築を 目指し、実機エンジンをダイナモメータ(図 6_DY1)に、 実機モータ(M/G)をダイナモメータ(図 6_DY2)と接続 し、制御分担比の設定変更が可能なハイブリッド制御 コントローラモデルと車両モデルを搭載したシステ ムを構成している。また、バッテリモデルによって得 られる出力電圧は、直流電源装置からインバータに対 し給電している。

7. まとめ

電気駆動車のエネルギ効率向上の検討を行うため、 電気駆動車の解析モデルを構築した。今回の計算条件 下において検討した本供試車両の最適エネルギ回生 方法については、合理的な結果を得ることができた。 今後は、本解析モデルを重量車に展開し、重量車の高 効率エネルギ回生方法を検討する予定である。

さらに、ハイブリッド台上試験装置の整備を進め、 重量車 HEV システムの全体最適化を図る予定である。

参考文献

(1) 総合資源エネルギー調査会 省エネルギー基準部 会 重量車判断基準小委員会・重量車燃費基準検討 会:最終取りまとめ、参考1_p.4-5 (2005) (2) 清水健一:ハイブリッド制御技術の変遷と最新技 術動向、自動車技術、Vol. 56、No. 9、p. 70-75 (2002) (3) 佐野喜亮、浦野徹、松原譲二、蒲地誠、恒川肇: 『i-MiEV』に採用した最新のEV要素技術、三菱自動車 テクニカルレビュー、Vol. 22、p. 23-28 (2010) (4) 三菱自動車: i-MiEV、三菱自動車テクニカルレビ л, Vol. 22, p. 71-74 (2010) (5) Cacciatori E., Bonnet B., Vaughan N.D., Burke M., Price D., Wejrzanowski K. : Regenerative Braking Strategies for A Parallel Hybrid Powertrain with Torque Controlled IVT, SAE, 2005-01-3826 (2005) (6) 牧野茂雄: 電動自動車のテクノロジー、モータフ ァン・イラストレーテッド、東京、三栄書房、2009、 p. 60-63